
10/15/25

1

A Mathematical Example: Factorial

• Non-recursive definition:
n! = n × n-1 × … × 2 × 1
 = n (n-1 × … × 2 × 1)

• Recursive definition:
n! = n (n-1)!
0! = 1

for n ≥ 0 Recursive case
Base case

What happens if there is no base case?

1

Factorial as a Recursive Function

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

• n! = n (n-1)!
• 0! = 1

What happens if there is no base case?

Recursive case

Base case(s)

2

Example: Fibonnaci Sequence

• Sequence of numbers: 1, 1, 2, 3, 5, 8, 13, ...
 a0 a1 a2 a3 a4 a5 a6

§ Get the next number by adding previous two
§ What is a8?

• Recursive definition:
§ an = an-1 + an-2 Recursive Case
§ a0 = 1 Base Case
§ a1 = 1 (another) Base Case

Why did we need two base cases this time?

3

Fibonacci as a Recursive Function

def fibonacci(n):
"""Returns: Fibonacci no. an
Precondition: n ≥ 0 an int"""
if n <= 1:

return 1

return (fibonacci(n-1)+
 fibonacci(n-2))

• Function that calls itself
§ Each call is new frame
§ Frames require memory
§ ∞ calls = ∞ memory

n

fibonacci 3

5

n

fibonacci 1

4 n

fibonacci 1

3

4

Fibonacci: # of Frames vs. # of Calls

• Fibonacci is very inefficient.
§ fib(n) has a stack that is always ≤ n
§ But fib(n) makes a lot of redundant calls

fib(5)

fib(4)

fib(3) fib(2)

fib(2) fib(1) fib(0)

fib(0)

fib(1)

fib(1)

fib(3)

fib(2) fib(1)

fib(0)fib(1)

Path to end =
the call stack

5

Recursion is best for Divide and Conquer

Goal: Solve problem P on a piece of data

data
Idea: Split data into two parts and solve problem

data 1 data 2

Solve Problem P Solve Problem P

Combine Answer!

6

10/15/25

2

Divide and Conquer Example

Count the number of 'e's in a string:

p e nn e

Two 'e's

p e nn e

One 'e' One 'e'

7

Three Steps for Divide and Conquer

1. Decide what to do on “small” data
§ Some data cannot be broken up
§ Have to compute this answer directly

2. Decide how to break up your data
§ Both “halves” should be smaller than whole
§ Often no wrong way to do this (next lecture)

3. Decide how to combine your answers
§ Assume the smaller answers are correct
§ Combining them should give bigger answer

8

Divide and Conquer Example

def num_es(s):
 """Returns: # of 'e's in s"""
 # 1. Handle small data
 if s == '':
 return 0
 elif len(s) == 1:
 return 1 if s[0] == 'e' else 0

 # 2. Break into two parts
 left = num_es(s[0])
 right = num_es(s[1:])

 # 3. Combine the result
 return left+right

“Short-cut” for
 if s[0] == 'e’:
 return 1
 else:
 return 0

p e nn e

0 2+

s[0] s[1:]

9

Exercise: Remove Blanks from a String

def deblank(s):
 """Returns: s w/o blanks"""
 if s == '':
 return s
 elif len(s) == 1:
 return '' if s[0] == ' ' else s

 left = deblank(s[0])
 right = deblank(s[1:])

 return left+right

Handle small data

Break up the data

Combine answers

10

Minor Optimization

def deblank(s):
 """Returns: s w/o blanks"""
 if s == '':
 return s

 left = s[0]
 if s[0] == ' ':
 left = ''
 right = deblank(s[1:])

 return left+right

Eliminate the
second base

by combining

Less recursive calls

11

Following the Recursion

a b c

a

b

c c

c

cb

cb

cba

cba

cba

✗

✗

✗

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

12

