
PREPARING FOR PRELIM 2

CS 1110: FALL 2025

This handout explains what you have to know for the second prelim. There will be a review session with
detailed examples to help you study. To prepare for the prelim, you can (1) practice writing functions
and classes in Python, (2) review the assignments and labs, (3) review the lectures and/or videos, and (4)
memorize terminology listed below.

The prelim will covers material up to and including the lecture on November 18th (Advanced Error Handling).
The test will focus on recursion, iteration, and classes (e.g. Assignments 4 - 6, as well as all related labs). It
will not include GUI classes or anything to do with Assignment 7.

1. Exam Information

The exam will be held on Thursday, December 4th, the last full day of class. While we did okay with
the date for our first exam, the university decided to give us a bad day for our second exam. Because of the
size of the class, we are split across multiple classrooms. Rooms are assigned by the first two letters of your
last name (unless you are taking a make-up). Pay careful attention to your room assignment.

• Students with last names A – Ki meet in Baker Lab 200.
• Students with last names Kl – Li meet in Baker Lab 203.
• Students with last names Lo – V meet in Rockefeller 201.
• Students with last names W – Z meet in Rockefeller 203.

1.1. Review Session. There will be a review session on Monday, December 1st at a time to be an-
nounced at a later date. This review session will cover material in this handout and explain the basic
structure of the exam. It will also go over several sample problems to help you prepare for the exam.

In addition, URMC (Under-Represented Minorities in Computing) is holding their own study session on
November 19th in CIS 142 (this is the NEW computing building) from 6-8 pm. This session is open to
everyone regardless of their affiliation with URMC.

2. Content of the Exam

Once again, there will be (at most) five questions, each of roughly equal weight. These questions will be
taken from some combination of the following six topics:

Recursion. You will be asked to write a recursive function. It will be roughly the complexity of the recursive
functions in the lab (e.g. labs 15 and 16). We are unlikely to have a Turtle question. The recursion questions
on Fall 2022 Prelim 2 are a good example of what we might ask: one straight-forward recusive function and
one harder one (Recursion questions are often picked as the A-level question). Fall 2021 is another good one,
though this time the harder question (merge) was the first one.

Your recursive function will either be a straight-forward recursive definition (think palindrome) or it will ask
you to solve a divide-and-conquer problem. If it is the latter, remember the three steps:

(1) Solve the problem on small data
(2) Break up the problem and solve it (recursively) on the two halves

1



(3) Combine the answers back together to get the final answer

You should also be prepared to draw a (short) call stack for a recursive function. We have not decided to
add such a question yet, but in the past, the really short recursive functions are generally all-or-nothing. A
call stack question would allow us to test your knowledge of recursion even if you did not do so well on the
programming part.

Iteration. You will be given a problem that you will need to use either a while-loop or a for-loop to solve.
You should know how to use a for-loop on a sequence if you are given one, or how to use range() function if
you are not given one. You should know how to use an accumulator if needed to perform calculations using
a for-looop.

As part of this question, we might ask you to write a function that processes a 2-dimensional list. This
would likely require two nested for-loops. Assignment 6 should have given you a lot of experience with this.
We may also ask you to loop over dictionaries. Again at the 2022 Fall Prelim 2 for an example of this.

You will note that previous years exams do not have while-loops on them. That is because we typically
do not cover them in time for prelim 2. But this year we have. They are fair game. I good example of
a while-loop question is one where you have to modify a list. Look at pyro.py in the GUI lecture for an
interesting usage of a while loop (though GUI topics are NOT on the exam).

Classes. You should know how to create a class that includes attributes, getters, setters, an initializer,
and very simple methods. You should know the names of the three most important built-in methods (e.g.
__init__,__str__, and __eq__), but you do not need to know the names of any of the others. We expect
you to be able to construct getters and setters for attributes given a class invariant.

You should also know how to create a subclass, and should know how inheritance and overriding work
in Python. You should expect to be given a base class and be asked to subclass it to provide additional
functionality. The labs are a good reference here.

Diagramming Objects. You will be given a series of assignments and constructor calls. You will be
expected to (1) identify the number of objects that are created, (2) draw folder representations of each of
each object, and (3) draw folder representations of each class. You should have a lot of experience with this
after Assignment 5.

Short Answer. In recent years, the four topics above have been long enough that we have not asked
short-answer questions on the second prelim (instead, saving them for the final). If we do ask short answer
questions, they will focus on terminology, particularly regarding object-oriented methodology. For this part
of the test, we recommend that you review the lecture slides and the provided demo code. In addition, we
have a provided a list of important terminology below.

The short answer questions may also include short, poutporri-style questions that were not long enough to
merit a separate category of their own. For example, we might ask a few questions about dictionaries or
nested lists here if we did not cover them anywhere else on the exam. This is also the only place that we
might ask a question on advanced error handling.

3. Terminology and Important Concepts

Below, we summarize the terms you should know for this exam. You should be able to define any term below
clearly and precisely. If it is a Python statement, you should know its syntax and how to execute it. You
should know all of this in addition to the terminology that you had to learn for the first prelim.

2



Abstraction. Abstraction is when one class pretends to be another through operator overloading or familliar
looking methods. For example, you can use the methods __len__, __getitem__, and __setitem__ methods
to make your class act like a list. Abstraction helps a user work with a complicated concept (like image
processing) by presenting it to the user in a simple-to-understand form.

Accumulator. An accumulator is a fancy name for a variable in a for-loop that stores information computed
in the for-loop and which will be still available when the for-loop is complete.

Example: In the for loop

total = 0
for x in range(5):

total = total + x

the variable total is an accumulator. It stores the sum of the values 0..4.

Attribute. Attributes are variables that are stored inside of an object. Instance attributes belong to an
object or instance. Instance attributes are created by assignment statement that prefaces the object name
before the period. They are typically created in the class initializer.

Class attributes belong to the class. They are created by an assignment statement that prefaces the class
name before the period. They are also created by any assignment statement in the class definition that is
outside of a method definition.

It is impossible to enforce invariants on attributes as any value can be stored in an attribute at any time.
Therefore, we prefer to make attributes hidden (by starting their name with an underscore), and replacing
them with getters and setters.

Example: If the variable color stores an RGB object, then the assignment color.red = 255 alters the red
instance attribute. The assignment RGB.x = 1 would create a class attribute x.

Bottom-Up Rule. This is the rule by which Python determines which attribute or method definition to
use (when the attribute is used in an expression, or the method is called). It first looks in the object folder.
If it cannot find it there, it moves to the class folder for this object. It then follows the arrows from child
class to parent class until it finds it. If Python reaches the folder for object (the superest class of all) and
still cannot find it, it raises an error.

If the attribute or method is in multiple folders, it uses the first one that it finds.

Class. A class is any type that is not built-in to Python (unlike int, float, bool, and str which are
built-in). A value of this type is called an object.

Class definition. This is a template or blueprint for the objects (or instances) of the class. A class defines
the components of each object of the class. All objects of the class have the same components, meaning they
have the same attributes and methods. The only difference between objects is the values of their attributes.
Using the blueprint analogy, while many houses (objects) can be built from the same blueprint, they may
differ in color of rooms, wallpaper, and so on.

In Python, class definitions have the following form:

class <classname>(<superclass>):
<class specification>
<getters and setters>
<initializer definition>
<method definitions>

3



In most cases, we use the built-in class object as the super class.

Constructor. A constructor is a function that creates a object for a class. It puts the object in heap space,
and returns the name of the object (e.g. the folder name) so you can store it in a variable. A constructor
has the same name as the type of the object you wish to create.

When called, the constructor does the following:

• It creates an empty object folder.
• It puts the folder into heap space.
• It executes the initializer method __init__ defined in the body of the class. In doing so, it

– Passes the folder name to that parameter self
– Passes the other arguments in order
– Executes the commands in the body of __init__

• When done with __init__ it returns the object (folder) name as final value of expression.

There are no return statements in the body of __init__; Python handles this for you automatically.

Example constructor call (within a statement) : color = RGB(255,0,255)

Example __init__ definition:

def __init__(self,x,y):
self.x = x
self.y = y

Default Argument. A default argument is a value that is given to a parameter if the user calling the
function or method does not provide that parameter. A default argument is specified by wording the
parameter as an assignment in the function header. Once you provide a default argument for a parameter,
all parameters following it in the header must also have default argumetns.

Example:

def foo(x,y=2,z=3):
...

In this example, the function calls foo(1), foo(1,0), foo(1,0,0), and foo(1,z=0) are all legal, while
foo() is not. The parameter x does not have default arguments, while y and z do.

Encapsulation. Encapsulation is the process of hiding parts of your data and implementation from users
that do not need access to that parts of your code. This includes restricting access to attributes via getters
and setters, but it also includes the usage of hidden methods as well. This process makes it easier for you
to make changes in your own code without breaking the code of anyone who is using your class. See the
definitions of interface and implementation.

Getter. A getter is a special method that returns the value of an instance attribute (of the same name)
when called. It allows the user to access the attribute without giving the user permission to change it. It is
an important part of encapsulation.

Example: If _minutes is an instance attribute in class Time, then the getter would be

class Time(object):
def getMinutes(self):

"""Returns the minutes attribute"""
return self._minutes

4



Global Space. Global space is area of memory that stores any variable that is not defined in the body of a
function. These variables include both function names and modules names, though it can include variables
with more traditional values. Variables in global space remain until you explicitly erase them or until you
quit Python.

The Heap. The heap or heap space is the area of memory that stores mutable objects (e.g. folders). It also
stores function definitions, the contents of modules imported with the import command, as well as class
folders. Folders in the heap remain until you explicitly erase them or until you quit Python. You cannot
access the heap directly. You access them with variables in global space or in a call frame that contain the
name of the object in heap space.

Immutable Attribute. An immutable attribute is a hidden attribute that has a getter, but no setter. This
implies that a user it not allowed to alter the value of this attribute. It is an important part of encapsulation.

Implementation. An implementation is a collection of Python code for a function, module, or class)
that satisfies a specification. This code may be changed at any time as long as it continues to satisfy the
specification.

In the case of a function, the implementation is limited to the function body. In the case of a class,
the implementation includes the bodies of all methods as well as any hidden attributes or methods. The
implementation for a module is similar to that of a class.

Inheritance. Inheritance is the process by which an object can have a method or attribute even if that
method or attribute was not explicitly mentioned in the class definition. If the class is a subclass, then any
method or attribute is inherited from the superclass.

Interface. The interface is the information that another user needs to know to use a Python feature, such
as a function, module, or class. The simplest definition for this is any information displayed by the help()
function.

For a function, the interface is typically the specification and the function header. For a class, the interface
is typically the class specification as well as the list of all unhidden methods and their specifications. The
interface for a module is similar to that of a class.

Instance. This is a synonym for an object. An object is an instance of a class.

Invariant. An invariant is a statement about an attribute that must always be true. It can be like a
precondition, in that prevents certain types of values from being assigned to the attribute. It can also be a
relationship between multiple attributes, requiring that when one attribute is altered, the other attributes
must be altered to match.

is. The is operator works like == except that it compares folder names, not contents. The meaning of the
operator is can never be changed. This is different from ==, whose meaning is determined by the special
operator method __eq__. If == is used on an object that does not have a definition for method __eq__, then
== and is are the same.

isinstance. The function call isinstance(ob,C) returns True if object ob is an instance of class C. This
is different than testing the type of an object, as it will return True even if the type of ob is a subclass of C.

5



Method. Methods are functions that are stored inside of an class folder. They are defined just like a
function is defined, except that they are (indented) inside-of a class defintion.

Example method toSeconds() :

class Time(object):
def toSeconds(self):

"""Returns minutes, hours as seconds"""
return 60*self.hours+self.minutes

Methods are called by placing the object variable and a dot before the function name. The object before
the dot is passed to the method definition as the argument self. Hence all method definitions must have at
least one parameter.

Example: If t is a time object, then we call the method defined above with the syntax t.toSeconds(). The
object t is passed to self.

Mutable Attribute. An mutable attribute is a hidden attribute that has both a getter and a setter. This
implies that a user it allowed to alter the value of this attribute, provide that the invariant is not violated.
It is an important part of encapsulation.

Object. An object is a value whose type is a class. Objects typically contain attributes, which are variables
inside of the object which can potentially be modified. In addition, objects often have methods, which are
functions that are stored inside of the object.

Operator Overloading. Operator overloading is the means by which Python evaluates the various operator
symbols, such as +, *, /, and the like. The name refers to the fact that an operator can have many different
“meanings” and the correct meaning depends on the type of the objects involved.

In this case, Python looks at the class or type of the object on the left. If it is a built-in type, it uses the
built-in meaning for that type. Otherwise, it looks for the associated special method (beginning and ending
with double underscores) in the class definition.

Overriding a Method. In a subclass, one can redefine a method that was defined in a superclass. This
is called overriding the method. In general, the overriding method is called. To call an overridden method
method of the superclass, use the notation

super().method(...)

If you want to access the method in a class other than the immediate parent, use

super(self,<childclass>).method(...)

where <childclass> is the immediate child of the class you want to access.

Setter. A setter is a special method that can change the value of an instance attribute (of the same name)
when called. The purpose of the setter is to enforce any invariants. The docstring of the setter typically
mentions the invariants as a precondition.

Example: If _minutes is an instance attribute in class Time, then the setter would be

class Time(object):
def setMinutes(self,value):

"""Set _minutes attribute to value

Precondition: value is int in range 0..59"""
6



assert type(value) == int
assert 0 <= value and value < 60
self._minutes = value

Subclass. A subclass D is a class that extends another class C. This means that an instance of D inherits
(has) all the attributes and methods that an instance of C has, in addition to the ones declared in D. In
Python, every user-defined class must extend some other class. If you do not explicitly wish to extend
another class, you should extend the built-in class called object (not to be confused with an object, which
is an instance of a class). The built-in class object provides all of the special methods that begin and end
with double underscores.

Try-Except (Advanced). The try-except control structure was covered on the first prelim. There is an
alternate version of try-except that only recovers for certain types of errors. It has the form

try:
<statements>

except <error-class>:
<statements>

Python executes all of the statements underneath try. If there is no error, then Python does nothing and
skips over all the statements underneath except. However, if Python crashes while inside the try portion,
it checks to see if the error object generated has class (or is a subclass of) <error-class>. If so, it jumps
over to except, where it executes all the statements underneath there. Otherwise, the error propagates up
the call stack where it might recover in another except statement or not at all.

Example:

try:
print('A')
x = 1/0
print('B')

except ZeroDivisionError:
print('C')

This code prints out 'A', but crashes when it divides 1/0. The execution skips over the remainder of the
try (so it does not print out 'B'). Since the error is indeed a ZeroDivisionError, it jumps to the except
and prints out 'C'.

Suppose, on the other hand, the try-except had been

try:
print('A')
x = 1/0
print('B')

except AssertionError:
print('C')

In this case, the code prints out 'A', but crashes when it divides 1/0 and does not recover.

7


	1. Exam Information
	1.1. Review Session

	2. Content of the Exam
	Recursion
	Iteration
	Classes
	Diagramming Objects
	Short Answer

	3. Terminology and Important Concepts
	Abstraction
	Accumulator
	Attribute
	Bottom-Up Rule
	Class
	Class definition
	Constructor
	Default Argument
	Encapsulation
	Getter
	Global Space
	The Heap
	Immutable Attribute
	Implementation
	Inheritance
	Interface
	Instance
	Invariant
	is
	isinstance
	Method
	Mutable Attribute
	Object
	Operator Overloading
	Overriding a Method
	Setter
	Subclass
	Try-Except (Advanced)


