
Last Name: First: Netid:

CS 1110 Prelim 1 October 17th, 2024

This 90-minute exam has 6 questions worth a total of 100 points. Read over the whole test before
starting. Budget your time wisely. Use the back of the pages if you need more space. You may tear
the pages apart; we have a stapler at the front of the room.

It is a violation of the Academic Integrity Code to look at any exam other than your
own, to look at any other reference material, or to otherwise give or receive unautho-
rized help.

You will be expected to write Python code on this exam. We recommend that you draw vertical
lines to make your indentation clear, as follows:

def foo():
if something:

do something
do more things

do something last

You should not use loops or recursion on this exam. Beyond that, you may use any Python feature
that you have learned in class (if-statements, try-except, lists), unless directed otherwise.

Question Points Score

1 2

2 15

3 18

4 25

5 18

6 22

Total: 100

The Important First Question:

1. [2 points] Write your last name, first name, and netid, at the top of each page.

Last Name: First: Netid:

Reference Sheet

Throughout this exam you will be asked questions about strings and lists. You are expected to
understand how slicing works. In addition, the following functions and methods may be useful.

String Functions and Methods

Expression
or Method

Description

len(s) Returns: number of characters in s; it can be 0.
a in s Returns: True if the substring a is in s; False otherwise.
s.count(s1) Returns: the number of times s1 occurs in s
s.find(s1) Returns: index of the first character of the FIRST occurrence of s1 in s

(-1 if s1 does not occur in s).
s.find(s1,n) Returns: index of the first character of the first occurrence of s1 in s

STARTING at position n. (-1 if s1 does not occur in s from this position).
s.rfind(s1) Returns: index of the first character of the LAST occurrence of s1 in s

(-1 if s1 does not occur in s).
s.isalpha() Returns: True if s is not empty and its elements are all letters; it returns

False otherwise.
s.isdigit() Returns: True if s is not empty and its elements are all numbers; it returns

False otherwise.
s.isalnum() Returns: True if s is not empty and its elements are all letters or numbers;

it returns False otherwise.
s.islower() Returns: True if s is has at least one letter and all letters are lower case;

it returns False otherwise (e.g. 'a123' is True but '123' is False).
s.isupper() Returns: True if s is has at least one letter and all letters are upper case;

it returns False otherwise (e.g. 'A123' is True but '123' is False).
s.lower() Returns: A copy of s with all letters lower case.
s.upper() Returns: A copy of s with all letters upper case.

List Functions and Methods
Expression
or Method

Description

len(x) Returns: number of elements in list x; it can be 0.
y in x Returns: True if y is in list x; False otherwise.
x.count(y) Returns: the number of times y occurs in x
x.index(y) Returns: index of the FIRST occurrence of y in x

(an error occurs if y does not occur in x).
x.index(y,n) Returns: index of the first occurrence of y in x STARTING at position n

(an error occurs if y does not occur in x).
x.append(y) Adds y to the end of list x.
x.insert(i,y) Inserts y at position i in list x, shifting later elements to the right.
x.remove(y) Removes the first item from the list whose value is y

(an error occurs if y does not occur in x).

The last three list methods are all procedures. They return the value None.

Page 2

Last Name: First: Netid:

2. [15 points total] Short Answer Questions.

(a) [5 points] Name the four categories of variables we have seen in class. Describe each one.

• Global variables – variables assigned outside of function definition

• Local variables – variables assigned in a function definition

• Parameters – variables in a function header

• Attributes – variables in an object folder

(b) [4 points] What is the definition of a type cast? What is the difference between a widening
cast and a narrowing cast? Give an example of each.

A type cast is the conversion of a value from one type to another. A widening cast converts
the type from one with less information to more information (e.g. int to float). An example
is float(2) or 3/2.0. A narrowing cast is the reverse – from more information to less. An
example is int(2.3).

(c) [6 points] Consider the following code:

1 def first(n):
2 print('Start first')
3 try:
4 second(n)
5 print('In first try')
6 except:
7 print('In first except')
8 print('Done first')
9

10 def second(n):
11 print('Start second')
12 try:
13 assert n <= 0, 'is not <= 0'
14 print('In second try')
15 except:
16 print('In second except')
17 assert n >= 0, 'not >= 0'
18 print('Done second')

What is printed out when we call the following functions?

i. first(-1)
'Start first'
'Start second'
'In second try'
'In first except'
'Done first'

ii. first(1)
'Start first'
'Start second'
'In second except'
'Done second'
'In first try'
'Done first'

Page 3

Last Name: First: Netid:

3. [18 points] String Slicing.

Implement the function below according the specification. Remember to refer to the reference
guide on the second page.

def isrepeated(s):
"""Returns whether a '-' dash divides s in to equal substrings.

If '-' is not in s, or appears more than two times, this function returns False.
Otherwise, we use the dash to break s into (2 or 3) substrings. We return True
only if these substrings are equal.

Examples:
isrepeated('a-a') returns True
isrepeated('ab-ab-ab') returns True
isrepeated('a-A') returns False
isrepeated('a-aa') returns False
isrepeated('a') returns False
isrepeated('a-a-a-a') returns False

Precondition: s is a string"""

Verify the correct number of dashes
c = s.count('-')
if c == 0 or c > 2:

return False

Find the first two strings
pos1 = s.find('-')
first = s[:pos1]
second = s[pos1+1:]
if c == 1:

Compare them
return first == second

Find the third if as it must exist
pos2 = s.find('-',pos1+1)
second = s[pos+1:pos2]
third = s[pos2+1:]
Compare them
return first == second and second == third

Page 4

Last Name: First: Netid:

4. [25 points total] Testing and Debugging.

(a) [10 points] Consider the following function header and specification:
def extract_int(seq):

"""Returns a list containing only the ints in seq, in the same order as seq

Example: extract_int([1, True, 'A', 2]) returns [1,2]

Precondition: seq is a list"""

Do not implement this function. Instead, write down a list of at least six test cases
that you would use to test out this function. By a test case, we just mean an input and
an expected output; you do not need to write an assert_equals statement. For each test
case explain why it is significantly different from the others.

There are many different possible answers to this question. Below are the different solutions
we were thinking of. If you had (at least) six test cases that were close to the ones below,
you got full credit. Otherwise, we checked if your test cases were different enough, and
awarded you 2 points for each test.

Input Output Reason
seq=[] [] Empty list
seq=[1,'Hello',True] [1] One int
seq=[1,'Hello',2] [1,2] Multiple ints, not adjacent
seq=[1,2, 'Hello'] [1,2] Multiple ints, adjacent
seq=[1,2,3] [1,2,3] All ints
seq=[True,False] [] Non-empty, no ints

(b) [9 points] In the Roman numeral system, the symbols 'I', 'V', 'X', 'L', and 'C' stand
for the the numbers 1, 5, 10, 50, and 100, respectfully. A symbol after another of equal or
greater value adds its value (e.g. 'VI' is 6, 'XI' is 11, and 'XV' is 15). A symbol before
one of greater value subtracts its value (e.g. 'IV' is 4, 'IX' is 9, and 'XC' is 90). If you are
not familiar with the Roman numeral system, see the chart below for relevant examples.
The function romanize takes a integer 1..99 and converts it into a Roman numeral. There
are at least three bugs in the code on the next page. To help find the bugs, we have
added several print statements throughout the code, and show the results on the page after
that. Using this information as a guide, identify and fix the three bugs on the answer page.
Your fixes may include more than one line of code. You should explain your fixes.

Arabic Roman Arabic Roman Arabic Roman Arabic Roman
7 'VII' 36 'XXXVI' 59 'LIX' 80 'LXXX'
14 'XIV' 40 'XL' 60 'LX' 83 'LXXXIII'
20 'XX' 44 'XLIV' 64 'LXIV' 90 'XC'
23 'XXIII' 50 'L' 70 'LXX' 92 'XCII'
30 'XXX' 52 'LII' 77 'LXXVII' 99 'XCIX'

Page 5

Last Name: First: Netid:

Note: Write your answers on the next page

1 def romanize(n):
2 """Returns the Roman numeral for n
3
4 Example: romanize(74) returns 'LXXIV'
5
6 Precond: 0 < n < 100 is an int"""
7 tens = ''
8 ones = ''
9 if n >= 50:

10 print('More than 50') # TRACE
11 tens = numeralL(n//10)
12 elif n >= 10:
13 print('More than 10') # TRACE
14 tems = numeralX(n//10)
15 print('tens = '+repr(tens)) # WATCH
16
17 ones = romanize1to9(n % 10)
18 print('ones = '+repr(ones)) # WATCH
19 return tens+ones
20
21
22 def romanize1to9(n):
23 """Returns the Roman numeral for n
24
25 Example: romanize1to9(5) returns 'V'
26
27 Precond: 0 < n < 10 is an int"""
28 # Combined TRACE and WATCH
29 print('romanize1to9: n = '+repr(n))
30 if n < 5:
31 print('Less than 5') # TRACE
32 return romanize1to4(n)
33 elif n < 9:
34 print('Between 5 and 8') # TRACE
35 return 'V'+romanize1to4(n-5)
36 else:
37 print('Equal to 9') # TRACE
38 return 'IX'
39
40
41 def romanize1to4(n):
42 """Returns the Roman numeral for n
43
44 Example: romanize1to4(3) returns 'III'
45
46 Precond: 0 < n < 5 is an int"""
47 # Combined TRACE and WATCH
48 print('romanize1to4: n = '+repr(n))
49 values = ['I','II','III','IV']
50 choiceI = values[n-1]
51
52 # WATCH
53 print('choiceI = '+repr(choiceI))
54 return choiceI
55

56 def numeralL(n):
57 """Returns Roman numeral for tens value
58
59 The value n is the tens DIGIT of n
60 Example: numeralL(6) returns 'LX'
61
62 Precond: 5 <= n < 10 is an int"""
63 # Combined TRACE and WATCH
64 print('numeralL: n = '+repr(n))
65
66 if n < 9:
67 print('Less than 90') # TRACE
68 return 'L'+numeralX(n-5)
69 else:
70 print('Equals to 90') # TRACE
71 return 'XC'
72
73
74 def numeralX(n):
75 """Returns Roman numeral for tens value
76
77 The value n is the tens DIGIT of n
78 Example: numeralX(3) returns 'XXX'
79
80 When n is 0, it returns the empty
81 string (to be compatible w/ numeralL)
82
83 Precond: 0 <= n < 5 is an int"""
84 # Combined TRACE and WATCH
85 print('numeralX: n = '+repr(n))
86
87 values = ['','X','XX','XXX','XL']
88
89 choiceX = values[n]
90 # WATCH
91 print('choiceX = '+repr(choiceX))
92 return choiceX
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110

Page 6

Last Name: First: Netid:

Hint: Some bugs cannot be fixed with just one line. You might need to add a conditional.
Tests:

> > > romanize(14) # Expected: 'XIV'
More than 10
numeralX: n = 1
choiceX = 'X'
tens = ''
romanize1to9: n = 4
Less than 5
romanize1to4: n = 4
choiceI = 'IV'
ones = 'IV'
'IV'

First Bug:

This is a straight-forward misspelling error. The
variable tens is mispelled as tems on Line 14,
causing romanize to fall back to the original as-
signment on Line 5. To fix it, we rewrite Line 14
as the assignment

tens = numeralX(n//10)

> > > romanize(75) # Expected: 'LXXV'
More than 50
numeralL: n = 7
Less than 90
numeralX: n = 2
choiceX = 'XX'
tens = 'LXX'
romanize1to9: n = 5
Between 5 and 8
romanize1to4: n = 0
choiceI = 'IV'
ones = 'VIV'
'LXXVIV'

Second Bug:

The function romanize1to4 is being called in
such a way that the precondition is violated.
That is because romanize1to9 does not handle
the case n == 5 properly. We need to add the
following code to Line 33 of romanize1to9 (just
before the elif)

elif n == 5:
return 'V'

> > > romanize(60) # Expected: 'LX'
More than 50
numeralL: n = 6
Less than 90
numeralX: n = 1
choiceX = 'X'
tens = 'LX'
romanize1to9: n = 0
Less than 5
romanize1to4: n = 0
choiceI = 'IV'
ones = 'IV'
'LXIV'

Third Bug:

This is another precondition violation of
romanize1to4. But this time we see that the
precondition of romanize1to9 is also violated.
So the problem is in the top level romanize.
The problem is that we do not need to call
romanize1to9 at all if there is nothing in the
ones position. So we should change Line 17 to

if n % 10 > 0:
ones = romanize1to9(n % 10)

Page 7

Last Name: First: Netid:

(c) [6 points] Do not implement the function specified below.
Instead, use assert statements to enforce the precondition. Furthermore, each the assert
statement should produce one of the three error messages shown below
> > > before_space('abc')
AssertionError: 'abc' has no spaces.
> > > before_space(' abc')
AssertionError: ' abc' has an illegal space.
> > > before_space(13)
AssertionError: 13 is not a string.

def before_space(s):
"""Returns the part of the string before the first space in s

Precond: s a string with at least one space.
Furthermore, s does not start with a space."""

assert type(s) == str, repr(s)+' is not a string.'
assert ' ' in s, repr(s)+' has no spaces.'
assert s[0] != ' ', repr(s)+' has an illegal space.'

5. [18 points] Call Frames.

Consider the following function definitions.

1 def muddle(seq):
2 """Returns seq with some stuff added
3 Pre: seq is a nonempty list"""
4 half = middle(seq,1)
5 copy = seq[:]
6 return half+copy
7

8 def middle(it,pos):
9 """Returns a slice of it at pos

10 Pre: it a nonempty list, pos > 0 an int"""
11 if pos > 1:
12 return it[pos:]
13 return it[:pos]

Assume a = [1, 4, 5] is a global variable referencing a list in the heap, as shown on the next
page. Use the next two pages to diagram the evolution of the function call

a = muddle(a)

Diagram the state of the entire call stack for the function muddle when it starts, for each line
executed, and when the frame is erased. If any other functions are called, you should do this
for them as well (at the appropriate time). This will require a total of eight diagrams, not
including the first diagram on the next page

You should draw also the state of global space and the heap at each step. You can ignore the
folders for the function definitions. Only draw folders for lists or objects. To help conserve time,
you are allowed (and encouraged) to write “unchanged” if no changes were made to either a
call frame, the global space, or the heap.

Page 8

Last Name: First: Netid:

Call Stack Global Space The Heap

a id1
id1

list

0 1
1 4
2 5

id1
list

0 1
1 4
2 5

a id1
1 muddle

a id1

4

a id1

a id1

a id1
id1

list

0 1
1 4
2 5middle

it id1 pos 1

id1
list

0 1
1 4
2 5

id1
list

0 1
1 4
2 5

id2
list

0 1

2 muddle

seq id1

4

middle

it id1 pos 1

3 muddle

seq id1

4

4 muddle

seq id1

4

11

13

middle

it id1 pos 1
RETURN id2

Page 9

Last Name: First: Netid:

Call Stack Global Space The Heap

id1
list

0 1
1 4
2 5

id2
list

0 1

a id1
5

a id1

MAYBE

a id1
id1

list

0 1
1 4
2 5

id2
list

0 1

id3
list

id1
list

0 1
1 4
2 5

id2
list

0 1

id1
list

0 1
1 4
2 5

id2
list

0 1

MAYBE

6

7

8

a id1

muddle

seq id1 half id2

5

middle

it id1 pos 1
RETURN id2

muddle

seq id1 half id2
copy id3

6

0 1
1 4
2 5

id3
list

0 1
1 4
2 5

id4
list

0 1
1 1
2 4
2 5

muddle

seq id1 half id2
copy id3

RETURN id4

id3
list

0 1
1 4
2 5

id4
list

0 1
1 1
2 4
2 5

id1

muddle

seq id1 half id2
copy id3

RETURN id4

Page 10

Last Name: First: Netid:

6. [22 points total] Objects and Functions.

As you are probably aware, angles can be measured in either degrees or radians. There are
180◦ in π, making conversion between the two easy. However, there is more than one way to
specify degrees. We can specify degrees as decimals, like 75.3025◦. Or we can break up that
same values in to degrees, minutes and seconds as follows: 75◦ 18' 9" (the ' is for minutes and
the " is for seconds).

There are 60 minutes to a degree (just like minutes and hours) and 60 seconds to a minute. If
we need further accuracy, we add decimals to the seconds. For example, 75.302575◦ is the same
as 75◦ 18' 9.27". To implement this, we create an Angle class with the following attributes:

Attribute Meaning Invariant
degrees the angle degrees int value between 0 and 359 (inclusive)
minutes 1/60 of a degree int value between 0 and 59 (inclusive)
seconds 1/60 of a minute float value between 0.0 and 60.0 (excluding 60.0)

To make a new angle, we call the constructor function Angle(d,m,s).

(a) [6 points] Implement the function below according to the specification.
def angle2decimal(angle):

"""Returns the decimal equivalent of the given angle

Example if angle is the object Angle(75, 18, 9.27) then this
function returns 75.302575 (the value returned is a float)

Preconditions: angle is an Angle object"""
Convert each attribute to a float in degrees
d = float(angle.degrees)
m = angle.minutes/60.0
s = angle.seconds/(60.0*60.0)

Add them for the result
result = d+m+s
return result

Page 11

Last Name: First: Netid:

(b) [16 points] Implement the function below according to the specification.

def sub_angle(angle1,angle2):
"""MODIFIES angle1 to be the result of subtracting angle2

This function is a procedure and does not return a value. If the angle
becomes negative, it wraps back around to 360.

Example: If angle1 is Angle(64,34,21) and angle2 is Angle(175,54,50),
then sub_angle(angle1,angle2) changes angle1 to Angle(248,39,31).

Preconditions: angle1 and angle2 are Angle objects"""

Subtract degrees, minutes, and seconds separately
degrees = angle1.degrees-angle2.degrees
minutes = angle1.minutes-angle2.minutes
seconds = angle1.minutes-angle2.minutes

Adjust seconds if out of bounds
if seconds < 0:

seconds = seconds+60
minutes = minutes-1

Adjust minutes if out of bounds
if minutes < 0:

minutes = minutes+60
degrees = degrees-1

Adjust degrees if out of bounds
if degrees < 0:

degrees = degrees+360

Modify the attributes of angle1
angle1.seconds = seconds
angle1.degrees = degrees
angle1.minutes = minutes

Page 12

