
Specifications

Module 7

Introduction to the Module

• This module is dedicated to specifications
§ The docstring at start of a function (DEMO)
§ Also the website documentation (DEMO)

• Useful for knowing how a function works
§ What if you didn’t write the definition
§ Many functions you cannot see definition

• But why have an entire module on them?
§ Why not just say write good comments?

What Makes a Specification “Good”?

• Software development is a business
§ Not just about coding – business processes
§ Processes enable better code development

• Complex projects need multi-person teams
§ Lone programmers do simple contract work
§ Team must have people working separately

• Processes are about how to break-up the work
§ What pieces to give each team member?
§ How can we fit these pieces back together?

Focusing on the Basic Process

• May have heard of some of these processes
§ Design: Waterfall vs. Iterative vs. Agile
§ Deployment: DevOps

• These are beyond the scope of this course
§ Need a stronger programming background

• But there is a basic principal underlying all
§ Enabling communication and integration
§ They leverage functions to split up work

Functions as a Way to Separate Work

Function
Developer 1 Developer 2

Defines Calls

Working on Complicated Software

Developer 1 Developer 2

Func 1 Func 2

Func 3

Func 3 Func 4

Func 5

Calls

Architect plans
the separation

What Happens When Code Breaks?

Function
Developer 1 Developer 2

Defines Calls

BROKEN

Whose fault is it?
Who must fix it?

Purpose of a Specification

• To clearly layout responsibility
§ What does the function promise to do?
§ What is the allowable use of the function?

• From this responsibility we determine
§ If definer implemented function properly
§ If caller uses the function in a way allowed

• A specification is a business contract
§ Requires a formal documentation style
§ Agile etc. are ways to safely modify contract

So Why Do You Need to Know This?

• We have taught you how to write functions
§ You know all the technical details you need

• But not how to use code to solve problems
§ You are given a specification of a problem
§ You write code to a specification

• This means understanding specifications
§ What makes a good specification?
§ How do we cope with bad specifications?

Anatomy of a Specification

def greet(n):
"""Prints a greeting to the name n

Greeting has format 'Hello <n>!'
Followed by conversation starter.

Parameter n: person to greet
Precondition: n is a string"""
print('Hello '+n+'!')
print('How are you?')

One line description,
followed by blank line

More detail about the
function. It may be
many paragraphs.

Parameter description

For a later video

Idea Behind Python Specifications

• One line summary for the TL;DR
§ To quickly determine if function appropriate
§ Often omits small, but important details

• Details are the fine print
§ What exactly does this function do
§ Helps me determine if I am on the fence

• Parameters help me arrange arguments
§ Line them up with comments in details text

One line description,
followed by blank line

Anatomy of a Specification

def to_centigrade(x):
"""Returns: x converted to centigrade

Value returned has type float.

Parameter x: temp in fahrenheit
Precondition: x is a float"""
return 5*(x-32)/9.0

“Returns” indicates a
fruitful function

More detail about the
function. It may be
many paragraphs.

Parameter description

Goal: Separate procedures/fruitfuls

Python Docstring Conventions

• Python has guidance for docstrings
§ PEP 257 (linked on Canvas page)
§ Python Enhancement Proposals

• But gives too much flexibility for a beginner
§ Writing specifications is harder than coding
§ Learning to specify a large part of a CS degree

• Our version is more structured
§ Will hopefully cut down on mistakes (for now)
§ But adheres to the basic PEP guidelines

One line description,
followed by blank line

Anatomy of a Specification

def to_centigrade(x):
"""Returns: x converted to centigrade

Value returned has type float.

Parameter x: temp in fahrenheit
Precondition: x is a float"""
return 5*(x-32)/9.0

More detail about the
function. It may be
many paragraphs.

Parameter description

Precondition specifies
assumptions we make
about the arguments

Preconditions are a Promise

• If precondition true
§ Function must work

• If precondition false
§ Function might work
§ Function might not

• Assigns responsibility
§ How tell fault

>>> to_centigrade(32.0)
0.0
>>> to_centigrade('32')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "temperature.py", line 19 …

TypeError: unsupported operand type(s)
for -: 'str' and 'int'

Precondition violated

What if it Just Works?

• Violation != crash
§ Sometimes works anyway
§ Undocumented behavior

• But is bad practice
§ Definer may change the

definition at any time
§ Can do anything so long

as specification met
§ Caller code breaks

• Hits MS developers a lot

>>> to_centigrade(32.0)
0.0
>>> to_centigrade(212)
100.0

Precondition violated

Precondition
violations are
unspecified!

Assigning Responsibility

Function
Developer 1 Developer 2

Defines Calls

BROKEN

Precondition
violated

Assigning Responsibility

Function
Developer 1 Developer 2

Defines Calls

BROKEN

Precondition
correctly met

Assigning Responsibility

Function
Developer 1 Developer 2

Defines Calls

BROKEN

Precondition
correctly met

Caller may misinterpret the return.
But not a prob with (this) function.

USUALLY

Two Kinds of Preconditions

Type Restrictions

• Ex: x is an int
• Most common kind

§ Guarantees a set of ops
§ Some language support

• Very easy to check
§ good = type(x) == int

General Preconditions

• Ex: fname is a valid file
• Less common kind

§ Because of function
§ Precondition of called

functions is precond
• Not so easy to check

Aside: Singling Out Type Restrictions

• C/Java/etc restrict types in the language
§ Variables themselves have types
§ So int value can only go in an int box

• Call these statically typed languages
§ Acts as a way to enforce preconditions
§ Ideal for large and complex software

• But Python (& Javascript) dynamically typed
§ Will allow anything, but will crash if misused
§ Must rely entirely on the specification

Is Statically Typed Better?

• Some prefer static typing for beginners
§ Will quickly shut down any violations
§ Many errors become a lot easier to find

• But can create false sense of security
§ Not all preconditions expressable as a type
§ So need to read specification anyway

• Why we focus so much on specifications

Learning to Read Specifications

• Most of the time, you only have specification
§ The definition may be hidden
§ Our it may be too complicated to read

• But not all specifications are good
§ May be incomplete and miss details
§ Particularly common in open source

• Need to evaluate specifications by reading
§ This is an imprecise skill
§ Built up with experience

Things to Look For

• Are the preconditions clear?
§ Can you see what is allowed and what is not?
§ Pay close attention if the precond not typed
§ Try to think of weird cases that my work

• Fruitful: Is the return result clear?
§ Look at every case that you thought of above
§ Can you immediately tell the result

• Procedure: Is the outcome clear
§ Same as above otherwise

A Simple Case Study

def number_vowels(w):
"""
Returns: number of vowels in string w.

Parameter w: The text to check for vowels
Precondition: w string w/ at least one letter and only letters
"""
…

This looks clear, right?

Case Study: Creating Examples

def number_vowels(w):
"""
Returns: number of vowels in string w.

Parameter w: The text to check for vowels
Precondition: w string w/ at least one letter and only letters
"""
…

• Let’s brainstorm some inputs.
§ w = 'hat' Answer: 1
§ w = 'heat' Answer: 2
§ w = 'sky' Answer: ???

What to do about y?

Case Study: Creating Examples

def number_vowels(w):
"""
Returns: number of vowels in string w.

Parameter w: The text to check for vowels
Precondition: w string w/ at least one letter and only letters
"""
…

• Can we just figure out y from context?
§ Who said these were English words?
§ Welsh vowels include w as well ('cwtsh')
§ In fact, who said these are words at all ('grblx')?

Case Study: More Examples

def number_vowels(w):
"""
Returns: number of vowels in string w.

Parameter w: The text to check for vowels
Precondition: w string w/ at least one letter and only letters
"""
…

• What does number of vowels mean?
§ How does it handle repeated vowels ('beet’)?
§ If no repeats, does upper or lower case matter?

A Better Specification

def number_vowels(w):
"""
Returns: number of vowels in string w.

Vowels are defined to be 'a','e','i','o', and 'u'. 'y' is a vowel if it is
not at the start of the word.

Repeated vowels are counted separately. Both upper case and
lower case vowels are counted.

Examples: ….

Parameter w: The text to check for vowels
Precondition: w string w/ at least one letter and only letters
"""

More details
about outcome

Examples covering
the major cases

What Happened Here?

• Specification was very incomplete
§ Relied on confusion btwn string and text
§ We filled in details with assumptions

• This is very dangerous
§ Many of our assumptions are cultural
§ What if working with an international team?
§ Some internationals do not know vowels

• Must be very precise in our reading

What Should You Do?

• You may not change the specification
§ Not even if you are the function definer
§ Specification often came from higher up
§ Methodologies have rules for changing spec

• You should ask for more guidance
§ From the specification author (not definer)
§ In a course, this is the instructor

• We would rather you get it right first time

