Lecture 6

Specifications & Testing

Announcements For This Lecture

Last Call Assignment 1
* Acad. Integrity Quiz * Posted on tomorrow
* Take 1t by tomorrow = Due Fri, Sep. 20
 Also remember survey " Today’s lab will help

= Revise until correct

e Can work 1n pairs
= We will pair if needed

= Submit request tomorrow

* One submission per pair

9/7/23 Specifications & Testing

One-on-One Sessions

 Starts Monday: 1/2-hour one-on-one sessions

* Bring computer to work with instructor, TA or consultant

= Hands on, dedicated help with Labs 6 (and related)
= To prepare for assignment, not for help on assignment

* Limited availability: we cannot get to everyone

= Students with experience or confidence should hold back

 Sign up online in CMS: first come, first served

* Choose assignment One-on-One
* Pick a time that works for you; will add slots as possible

= Can sign up starting at Spm TODAY

9/7/23 Specifications & Testing

Recall: The Python API

¢

& Python Software Foundation docs.python.org/3/library/math.html

Function
name

Of Contents

LL

]

Gaming v Newsv Researchv Commentary v #comments Financial v Travel v Shopping v Technical v TroubleShooting v Developer v BBQ v Misc v
9.2. math — Mathematical functions — Python 3.6.2 documentation

&) Documentation » The Python Standard Library » 9. Numeric and Mathematical Modules »

9.2. math — Mathematical functions

math. ceil(x)
ceiling of x, the smallest integer greater than or equal to x.
|

X—

) Possible arguments |

| Go | | previous | next | modules | index

ctions are provided by this module. Except when explicitly noted otherwise, all return values are floats.

A Return the

TSz Anguar

Hyperbolic
ons
Special functions

. Constants

What the function evaluates to

float, delegates to x._ _ceil_ (), which should return an

Previous topic
9.1. numbers — Numeric -
abstract base classes

Next topic
9.3. cmath — Mathematical ~ €

functions for complex
numbers

This Page

Report a Bug
Show Source

Integral value.

math. copysign(x, y)
Return a float with the magnitude (absolute value)

-1.0.

math. fabs(x)
Return the absolute value of x.

math. factorial(x)
Return x factorial. Raises valueError if x is not inte

math. £loor(x)
Return the floor of x, the largest integer less than g

value.

math. fmod(x, y)
Return fmod(x, y), as defined by the platform C lig

C standard is that fmod(x, y) be exactly (mathem
same sign as x and magnitude less than abs(y). Py
float arguments. For example, fmod(-1e-100, 1lel0

» This 1s a specification

* Enough info to call function
= But not how to implement

)

* Write them as docstrings

9/7/23

Specifications & Testing

Anatomy of a Specification

(One line description,
def greet(n): Afollowed by blank line

"""Prints a greeting to the name n

Greeting has format 'Hello <n>!'
Followed by conversation starter.

Parameter n: person to greet
Precondition: n is a string™"
print('Hello '+n+'")
print(‘"How are you?')

9/7/23 Specifications & Testing 5

Anatomy of a Specification

rOne line description,
def greet(n): Zfollowed by blank line

"""Prints a greeting to the name n

More detail about the h
Greeting has format 'Hello <n>!' function. It may be
Followed by conversation starter. | many paragraphs.

Parameter n: person to greet
Precondition: n is a string™"
print('Hello '+n+'1")
print('How are you?')

9/7/23 Specifications & Testing 6

Anatomy of a Specification

def

9/7/23

rOne line description,
greet(n): Zfollowed by blank line
"""Prints a greeting to the name n

/ More detail about the h
Greeting has format 'Hello <n>!' function. It may be

Followed by conversation starter. \many paragraphs.

-)

Parameter n: person to greet — © arameter description

Precondition: n is a string™"
print('Hello '+n+'!")
print('"How are you?')

Specifications & Testing 7

Anatomy of a Specification

def

9/7/23

(One line description,
greet(n): Zfollowed by blank line
"""Prints a greeting to the name n

Z More detail about the h
Greeting has format 'Hello <n>!' function. It may be

Followed by conversation starter. (™0 paragraphs.

-)

Parameter description

Parameter n: person to greet ~ —=_ |
Precondition: n is a string™" Precondition specifies
print('Hello '+n+'") assumptions we make

| h
print('How are you?") about the arguments

Specifications & Testing 8

Anatomy of a Specification

6 . ..
One line description,
def to_centigrade(x): followed by blank line

9/7/23

"""Returns x converted to centigrade

More detail about the h
Value returned has type float. function. It may be

many paragraphs.

Parameter x: temp in fahrenheit

Precondition: x is a float""")
return 5*(x-32)/9.0 A

Precondition specifies
assumptions we make
about the arguments

~

ﬁParameter description

Specifications & Testing 9

Anatomy of a Specification

(4

def

9/7/23

‘Returns” indicates a
to_centigrade(x): fruitful function
X converted to centigrade

More detail about the A
Value returned has type float. function. It may be

many paragraphs.

Parameter x: temp in fahrenheit

~

Precondition: x is a float""" ﬁparameter description)

return 5*(x-32)/9.0 A

Precondition specifies
assumptions we make
about the arguments

Specifications & Testing 10

What Makes a Specification “Good”?

* Software development 1s a business
= Not just about coding — business processes
" Processes enable better code development
* Complex projects need multi-person teams
* Lone programmers do simple contract work
* Teams must have people working separately
* Processes are about how to break-up the work

= What pieces to give each team member?
= How can we fit these pieces back together?

9/7/23 Specifications & Testing

11

Functions as a Way to Separate Work

Developer 1 Developer 2

‘ Defines Calls ‘

9/7/23 Specifications & Testing 12

Working on Complicated Software

9/7/23

Developer 1 Developer 2

Calls

o g

Architect plans
the separation

Specifications & Testing

What Happens When Code Breaks?

Developer 1 h S Developer 2

@M@
‘ Defines Calls ‘
r N

Whose fault 1s 1t?
Who must fix 1t?

9/7/23 Specifications & Testing 14

Purpose of a Specification

* To clearly layout responsibility

* What does the function promise to do?

= What 1s the allowable use of the function?

* From this responsibility we determine

= [f definer implemented function properly

= If caller uses the function in a way allowed
* A specification 1s a business contract

= Requires a formal documentation style

= Rules for modifying contract beyond course scope

9/7/23 Specifications & Testing 15

Preconditions are a Promise

e If precondition true >>>to_centigrade(3:.0)
0.0
>>> t0_centigrade('32")

Traceback (most recent call last):
* Function might work File "<stdin>", line 1, in <module>

= Function might not File "temperature.py", line 19 ...
TypeError: unsupported operand type(s)

° Assigns I‘GSpOIlSibﬂity for -; 'str' and 'int'

= How to tell fault? [Preconditionm

9/7/23 Specifications & Testing 16

= Function must work

* If precondition false

Assigning Responsibility

Developer 1 Developer 2

o= Ne
Defines Calls
Precondition

violated

9/7/23 Specifications & Testing 17

Assigning Responsibility

Developer 1 Developer 2

o iNe
Defines Calls
Precondition

correctly met

9/7/23 Specifications & Testing 18

What if it Just Works?

* Violation != crash >>> to_centigrade(3:.0)

= Sometimes works anyway 0.0
" Undocumented behavior >>> $0_centigrade(R12)

* But 1s bad practice 100.0
" Definer may change the [Preconditionm
definition at any time

= Can do anything so long

N Precondition
as specification met

violations are
unspecified!

= (Caller code breaks

* Hits Microsoft devs a lot

9/7/23 Specifications & Testing

19

Testing Software

* You are responsible for your function definition
" You must ensure 1t meets the specification
" May even need to prove it to your boss

* Testing: Analyzing & running a program

= Part of, but not the same as, debugging

* Finds bugs (errors), but does not remove them
 To test your function, you create a test plan

= A test plan 1s made up of several test cases
= Each 1s an input (argument), and 1ts expected output

9/7/23 Specifications & Testing 20

Test Plan: A Case Study

def number_vowels(w):

Returns: number of vowels in string w.

Parameter w: The text to check for vowels
Precondition: w string w/ at least one letter and only letters

9/7/23

Brainstorm

some test cases

Specifications & Testing

21

Test Plan: A Case Study

def number_vowels(w):
i rhythm?
Returns: number of vowels in string w. crwth?

Parameter w: The text to check for vowels
Precondition: w string w/ at least one letter and only letters

Surprise!

Bad Specification

9/7/23 Specifications & Testing

Test Plan: A Case Study

def number_vowels(w):

Returns: number of vowels in string w.

Vowels are defined to be 'a','e','i','o’, and 'u'. 'y' is a vowel if it is
not at the start of the word.

Repeated vowels are counted separately. Both upper case and
lower case vowels are counted.

Examples:

Parameter w: The text to check for vowels
Precondition: w string w/ at least one letter and only letters

Test Plan: A Case Study

def number_vowels(w):
Some Test Cases

Returns: number of vowels BRI 84D OUTPUT

'hat' 1
Vowels are defined to be 'a’. = 5
not at the start of the word aciou

'‘grrr! 0

Repeated vowels are counted separately. Both upper case and
lower case vowels are counted.

Examples:

Parameter w: The text to check for vowels
Precondition: w string w/ at least one letter and only letters

Representative Tests

* We cannot test all possible inputs
= “Infinite” possibilities (strings arbritrary length)
= Even if finite, way too many to test

» Limit to tests that are representative

= Each test 1s a significantly different input

= Every possible input 1s similar to one chosen
e This 1s an art, not a science

= If easy, no one would ever have bugs
= Learn with much practice (and why teach early)

9/7/23 Specifications & Testing

25

Representative Tests

9/7/23

Representative Tests for
number_vowels(w)

Simplest

case first!

Word with just one vowel

= For each possible vowel!

A little Word with multiple vowels

Complex = Of the same vowel
= Of different vowels

Word with only vowels

Word with no vowels

Specifications & Testing 26

How Many “Different” Tests Are Here?

number_ vowels(w)

INPUT OUTPUT

hat' 1 A:2

'charm' 1 B:3

o C: 4

bet l D:5

'beet’ 2 E: I do not know
'‘beetle’ 3

9/7/23 Specifications & Testing 27

How Many “Different” Tests Are Here?

number_ vowels(w)

INPUT OUTPUT

'hat' 1
‘charm! 1
et 1
'beet’ 2
'‘beetle’ 3

 If in doubt, just add more tests

A:2
B: 3 CORRECTISH)
C: 4
D:5
E: 1

do not know

* You are never penalized for too many tests

9/7/23 Specifications & Testing

28

The Rule of Numbers

* When testing the numbers are 1, 2, and 0

 Number 1: The simplest test possible

= [f a complex test fails, what was the problem?

* Example: Word with just one vowels

* Number 2: Add more than was expected
= Example: Multiple vowels (all ways)
* Number 0: Make something missing

= Example: Words with no vowels

9/7/23 Specifications & Testing 29

Running Example

* The following function has a bug:

def last_name_first(n):
"""Returns a copy of n in the form 'last-name, first-name’

Precondition: n is in the form 'first-name last-name'
with one or more spaces between the two names"™"

end_first = n.find(' ")

first = n[:end_first]

last = n[end_first+1:] Precondition
return last+', '+first [forbids a O™ test J

* Representative Tests: /

= Jast_name first(‘Walker White’) returns 'White, Walker"
= Jast_name first(‘Walker = White’) returns 'White, Walker'

9/7/23 Specifications & Testing

30

Test Scripts: Automating Testing

* To test a function we have to do the following
= Start the Python interactive shell

* Import the module with the function

= (Call the function several times to see 1f 1t 1s okay
 But this is incredibly time consuming!

= Have to quit Python if we change module

= Have to retype everything each time
* What 1f we made a second Python file?

= This file 1s a script to test the module

9/7/23 Specifications & Testing

31

Unit Test: An Automated Test Script

* A unit test 1s a script to test a single function

" Im

" Im

¥
| T
Jhm

ports the function module (so 1t can access it)
ports the introcs module (for testing)

plements one or more test cases

A representative input

» The expected output

 The test cases use the introcs function

def assert_equals(expected,received):

"""Quit program if expected and received differ"""

9/7/23

Specifications & Testing

32

Testing last_name_first(n)

import name # The module we want to test
import introcs # Includes the test procedures

Test one space between names
result = name.last _name_first('Walker White’)

introcs.assert_equals(‘White, Walker', result)

Test multiple spaces between names
result = name.last_name_first('Walker White")
introcs.assert_equals(‘White, Walker', result)

print('Module name passed all tests.")

9/7/23 Specifications & Testing

33

Testing last_name_first(n)

import name # The m

Comment
describing test

import introcs # Includ

Test one space between names
result = name.last _name_first('Walker White’)

introcs.assert_equals(‘White, Walker', result)

Actual Output }
5 multiple spaces between names [Input ‘

result = name.last_name_first('Walker White")

introcs.assert_equals(‘White, Walker', result)

print('Module name passed &x—voooss

9/7/23 Specifications & Testing

34

Testing last_name_first(n)

import name # The module we want to test
import introcs # Includes the test procedures

Test one space between names
result = name.last _name_first('Walker White’)

introcs.assert_equals('White, Walker', result) Quits Python
if not equal

Test multiple spaces between names
result = name.last_name_first('Walker White")
introcs.assert_equals(‘White, Walker', result)

Message will print
print('Module name passed all tests.") out only if no errors.

9/7/23 Specifications & Testing 35

Testing Multiple Functions

* Unit test 1s for a single function

= But you are often testing many functions

* Do not want to write a test script for each

 Idea: Put test cases inside another procedure
= Each function tested gets 1ts own procedure

= Procedure has test cases for that function

" Also some print statements (to verify tests work)

* Turn tests on/off by calling the test procedure

9/7/23 Specifications & Testing

36

Test Procedure

def test_last _name_first():

""Tegt procedure for last_name_first(n)""”
print('Testing function last_name_first')

result = name.last_name_first('Walker White’)
introcs.assert_equals('White, Walker', result)

result = name.last_name_first('Walker White")

introcs.assert_equals('White, Walker', result)
Execution of the testing code

test_last _name_ first()
print('Module name passed all tests.")

9/7/23 Specifications & Testing

37

Test Procedure

def test_last _name_first():

""Tegt procedure for last_name_first(n)""”
print('Testing function last_name_first')

result = name.last_name_first('Walker White’)
introcs.assert_equals('White, Walker', result)

result = name.last _name_first('Walker White")

introcs.assert_equals('White, Walker', result)

Execution of the testiw No tests happen
test_last_name_first() —_ 1f you forget this
print('Module name passed all tests.")

9/7/23 Specifications & Testing

38

