Lecture 2

# Variables & Assignment

### **Announcements for Today**

#### If Not Done Already

- Install Python
  - Make sure right version
  - Make sure Kivy works
- Register your iClicker
- Sign into CMS
  - Fill out the Survey
  - Complete AI Quiz

#### Lab 1

- Labs are due at next class
  - So lab 1 is due now
  - By end of the lab section
  - Try to finish them before
- Makes T/W a little tight
  - Only 2 days (not 5)
  - Will keep them small
- Getting behind is bad!

### Helping You Succeed in this Class

- Consultants. Phillips 318 (after hours)
  - Daily office hours (see website) with consultants
  - Very useful when working on assignments
- AEW Workshops. Additional discussion course
  - Runs parallel to this class completely optional
  - See website; talk to advisors in Olin 167.
- Ed Discussions. Forum to ask and answer questions
  - Go here first **before** sending question in e-mail
- Office Hours. Talk to the professor!
  - Couches in Statler Balcony between classes

### Labs vs. Assignments

#### Labs

- Held twice a week
- Graded on completeness
  - Always S/U
  - Try again if not finished
- Indirect affect on grade
  - Can miss up to 3 labs
  - After that, grade reduced
- Similar to language drills
  - Simple, but take time

#### **Assignments**

- Every two weeks
  - First one due Sep. 15
- Graded on correctness
  - Assign points out of 100
- But **first** one is for *mastery* 
  - Resubmit until perfect grade
- 40% of your final grade
- Can work with a partner!
  - Mixer coming soon

### **Academic Integrity**

- Every semester we have cases of *plagiarism* 
  - Claiming the work of others as your own
  - This is an Academic Integrity violation
- This course has a very specific policy
  - Do not listen to (non-staff) upperclassmen
  - Look at the course website for the new details
- Complete Academic Integrity Quiz on CMS
  - Must complete successfully to stay in class

## AI(ntegrity) on AI(intelligence)

- Automated tools (ChatGPT) have gotten good
  - Can do a lot in an introductory course
  - Will change how we develop software
- But they also interfere with learning
  - This is a course about the basics
  - You need to learn to write your own code
- Use of automated tools is restricted
  - Can use to generate examples for yourself
  - But cannot use it for any code you submit to us

### **iClickers**

- Have you registered your iClicker?
- If not, visit (free service; no surcharge!)
  - https://csllllo.cs.cornell.edu/py/clicker
- See the course web page for more:
  - http://www.cs.cornell.edu/courses/cs1110/2024fa
  - Click "Materials/Textbook"
  - Look under "iClickers"

# Warm-Up: Using Python

How do you plan to use Python?

- A. I want to work mainly in the Phillips lab
- B. I want to use my own Windows computer
- C. I want to use my own Macintosh computer
- D. I want to use my own Linux computer
- E. I will use whatever I can get my hands on

### Type: Set of values and the operations on them

- Type **int**:
  - Values: integers
  - Ops: +, -, \*, //, %, \*\*
- Type **float**:
  - Values: real numbers
  - **Ops**: +, -, \*, /, \*\*
- Type **bool**:
  - Values: True and False
  - Ops: not, and, or

- Type **str**:
  - Values: string literals
    - Double quotes: "abc"
    - Single quotes: 'abc'
  - **Ops**: + (concatenation)

Will see more types in a few weeks

## Example: bool

- Values: True, False
  - That is it.
  - Must be capitalized!
- Three Operations
  - b and c(True if both True)
  - b or c(True if at least one is)
  - not b
    (True if b is not)

- Made by comparisons
  - int, float operations
  - But produce a bool
- Order comparisons:
  - i < j, i <= j
  - i >= j, i > j
- Equality, inequality:
  - $\bullet i == j (not = )$
  - i != j

### Example: str

- Values: text, or sequence of characters
  - String literals must be in quotes
  - Double quotes: "Hello World!", "abcex3\$g<&"</p>
  - Single quotes: 'Hello World!', 'abcex3\$g<&'</p>
- Operation: + (catenation, or concatenation)
  - 'ab' + 'cd' evaluates to 'abcd'
  - concatenation can only apply to strings
  - 'ab' + 2 produces an error

# **Converting Values Between Types**

- Basic form: *type*(*expression*)
  - This is an expression
  - Evaluates to value, converted to new type
  - This is sometimes called casting

## • Examples:

- float(2) evaluates to 2.0 (a float)
- int(2.6) evaluates to 2 (an int)
- Note information loss in 2<sup>nd</sup> example

# **Converting Values Between Types**

• Conversion is measured *narrow* to *wide* 

$$bool \Rightarrow int \Rightarrow float$$

- Widening: Convert to a wider type
  - Python does automatically
  - **Example:** 1/2.0 evaluates to 0.5
- Narrowing: Convert to a narrower type
  - Python never does automatically
  - **Example:** float(int(2.6)) evaluates to 2.0

# **Operator Precedence**

- What is the difference between these two?
  - **2\***(1+3)
  - -2\*1+3

# **Operator Precedence**

What is the difference between these two?

- 2\*(1+3) add, then multiply
- -2\*1+3 multiply, then add
- Operations are performed in a set order
  - Parentheses make the order explicit
  - What happens when no parentheses?

# **Operator Precedence**

What is the difference between these two?

```
-2*(1+3) add, then multiply
```

-2\*1+3 multiply, then add

# **Operator Precedence:**

The fixed order Python processes

operators in absence of parentheses

## **Precedence of Python Operators**

- Exponentiation: \*\*
- Unary operators: + -
- Binary arithmetic: \* / %
- Binary arithmetic: + -
- Comparisons: < > <= >=
- Equality relations: == !=
- Logical not
- Logical and
- Logical or

- Precedence goes downwards
  - Parentheses highest
  - Logical ops lowest
- Same line = same precedence
  - Read "ties" left to right
  - Example: 1/2\*3 is (1/2)\*3
- There is a video about this
- See website for more info
- Was major portion of Lab 1

### **Expressions vs Statements**

#### **Expression**

#### Statement

- Represents something
  - Python evaluates it
  - End result is a value
- Examples:
  - 2.3 Literal

- Does something
  - Python executes it
  - Need not result in a value
- Examples:
  - print('Hello')
  - import sys

Will see later this is not a clear cut separation

### **Variables**

#### A variable

- is a box (memory location)
- with a **name**
- and a **value** in the box
- Examples:

X S Variable x, with value 5 (of type int)

area 20.1 Variable area, w/ value 20.1 (of type float)

# **Using Variables**

- Variables can be used in expressions
  - Evaluate to the value that is in the box
  - **Example:** x 5 1 + x evaluates to 6
- Variables can change values
  - **Example**: x x 1.5 1 + x evaluates to 2.5
  - Can even change the type of their value
  - Different from other languages (e.g. Java)

# **Naming Variables**

- Python has strict rules of how to assign names
  - Names must only contain letters, numbers, \_
  - They cannot start with a number
- Examples
  - el is a valid name
  - le2 is not valid (it is a float)
  - a\_b is a valid name
  - a+b is not valid (it is + on two variables)

## Variables and Assignment Statements

Variables are created by assignment statements



- This is a **statement**, not an **expression** 
  - **Expression**: Something Python turns into a value
  - Statement: Command for Python to do something
  - Difference is that has no value itself

### Variables Do Not Exist Until Made

### • Example:

```
>>> y
Error!
>>> y = 3
>>> y
3
```

- Changes our model of Python
  - Before we just typed in one line at a time
  - Now program is a sequence of lines

# **Assignments May Contain Expressions**

- **Example**: x = 1 + 2



- Read assignment statements right-to-left!
- Evaluate the expression on the right
- Store the result in the variable on the left
- We can include variables in this expression
  - **Example:** x = y+2

5

X

• Example: x = x+2

This is not circular!

Read right-to-left.

2

• Draw variable x on piece of paper:

x 5

• Draw variable x on piece of paper:

- Step 1: evaluate the expression x + 2
  - For x, use the value in variable x
  - Write the expression somewhere on your paper

• Draw variable x on piece of paper:

x 5

- Step 1: evaluate the expression x + 2
  - For x, use the value in variable x
  - Write the expression somewhere on your paper
- Step 2: Store the value of the expression in x
  - Cross off the old value in the box
  - Write the new value in the box for x

• Draw variable x on piece of paper:

x 5

- Step 1: evaluate the expression x + 2
  - For x, use the value in variable x
  - Write the expression somewhere on your paper
- Step 2: Store the value of the expression in x
  - Cross off the old value in the box
  - Write the new value in the box for x
- Check to see whether you did the same thing as your neighbor, discuss it if you did something different.









$$X = X + 5$$

• You have this:

x **X** 7

• You have this:

```
x X 7
```

- Execute this command:
  - Step 1: Evaluate the expression 3.0 \* x + 1.0
  - Step 2: Store its value in x

You have this:

```
x X 7
```

- Execute this command:
  - Step 1: Evaluate the expression 3.0 \* x + 1.0
  - Step 2: Store its value in x
- Check to see whether you did the same thing as your neighbor, discuss it if you did something different.









$$x = 3.0 * x + 1.0$$

You now have this:

- The command:
  - Step 1: Evaluate the expression 3.0 \* x + 1.0
  - Step 2: Store its value in x
- This is how you execute an assignment statement
  - Performing it is called executing the command
  - Command requires both evaluate AND store to be correct
  - Important *mental model* for understanding Python

### **Exercise: Understanding Assignment**

• Add another variable, interestRate, to get this:

```
x x 22.0 interestRate 4
```

• Execute this assignment:

```
interestRate = x / interestRate
```

• Check to see whether you did the same thing as your neighbor, discuss it if you did something different.





interestRate = x/interestRate







### **Exercise: Understanding Assignment**

You now have this:

```
x x x 22.0 interestRate x 5.5
```

• Execute this assignment:

```
intrestRate = x + interestRate
```

• Check to see whether you did the same thing as your neighbor, discuss it if you did something different.













Spelling mistakes in Python are bad!!

# **Dynamic Typing**

- Python is a dynamically typed language
  - Variables can hold values of any type
  - Variables can hold different types at different times
- The following is acceptable in Python:
- Alternative is a statically typed language
  - Each variable restricted to values of just one type
  - This is true in Java, C, C++, etc.

# **Dynamic Typing**

- Often want to track the type in a variable
  - What is the result of evaluating x / y?
  - Depends on whether x, y are int or float values
- Use expression type(<expression>) to get type
  - type(2) evaluates to <type 'int'>
  - type(x) evaluates to type of contents of x
- Can use in a boolean expression to test type
  - type('abc') == str evaluates to True