Lecture 17

Dictionaries

Announcements for This Lecture

Optional Videos Assignment 4
* View the lesson videos « Should be working on it now
" Videos 19.1-19.7 today = Tasks 1-3 by Saturday
* Videos 20.1-20.8 Tue = Task 4 by Monday
" Videos 20.9-20.10 Thu = Task 5 by Wednesday

©
o«

10/23/24 Dictionaries

&

Key-Value Pairs

* The last built-in type: dictionary (or dict)
" One of the most important 1n all of Python

= Like a list, but built of key-value pairs
« Keys: Unique 1dentifiers

* Think social security number

= At Cornell we have netids: jrsi
* Values: Non-unique Python values

= John Smith (class ’13) 1s jrsl

Idea: Lookup
= John Smith (class *16) 1s jrs2 values by keys

10/23/24 Dictionaries

Basic Syntax

* Create with format: {kl:vl, k2:v3, ...}

= Both keys and values must exist

= Ex: d={'jrsl"'John’,'jrsR"'John’','wmwa"."Walker'}
* Keys must be non-mutable

" 1nts, floats, bools, strings, tuples

= Not lists or custom objects

* Changing a key’s contents hurts lookup

* Values can be anything

10/23/24 Dictionaries

Using Dictionaries (Type dict)

* Access elts. like a list d = {‘jrsl"'John',’jrs?".'John',
= d['jrs1'] evals to 'John’ 'wmwg':'Walker'}
= d[jrsR'] does too il ids
= d['wmw2'] evals to "Walker 1d3 .
= d['abcl'] 1s an error dict
» Can test if a key exists sl | _Johm
= irsl’ in d evals to True Jese’ |_John
= 'abcl'in d evals to False RRRi Walker

 But cannot slice ranges! Key-Value order in
folder 1s not important

10/23/24 Dictionaries 5

Dictionaries Can be Modified

* Can reassign values

- d[ljrsll] = 'Jane' d = {JPS]. . JOhIl ,JPSZ . JOhn,

. , 'wmw?":'Walker'}
" Very similar to lists

* Can add new keys ag LD
= d[‘aaal'] = 'Allen' dict
= Do not think of order jesl' | 'Jane'

* Can delete keys jes?' | 'John
= del d['wmw2'] 'wmwg' | 'Walker'

= Deletes both key, value

10/23/24 Dictionaries 6

Dictionaries Can be Modified

» Can reassign values

- d[ljrsll] = 'Jane' d = {JPS]. . JOhIl ,JPSZ . JOhn,

. , 'wmw?":'Walker'}
" Very similar to lists

* Can add new keys ag LD
= d[‘aaal'] = 'Allen' dict
= Do not think of order jesl' | 'Jane'

* Can delete keys jrs?' | 'John'
= del d['wmw2'] 'wmwg' | 'Walker'

‘aaal’ 'Allen'

= Deletes both key, value

10/23/24 Dictionaries 7

Dictionaries Can be Modified

o (Can reass et o |
gl Change key = Delete + Add jrs&''John’,

.. i WILLVW & . VV a,u{el"}
" Very similar to lists

* Can add new keys ag LD
= d['aaal'] = 'Allen' dict
= Do not think of order jesl' | 'Jane'

* Can delete keys jes?' | 'John
= del d['wmw? w2 | Waller

‘aaal’ 'Allen

= Deletes both key, value

10/23/24 Dictionaries 8

Dicts vs Objects

id2 id2
dict RGB
red' | 255 red 255
'Sreen’| 128 green | 128
'blue’ 0 blue 0
» (Can add new variables * Variables fixed (sort-of)
* Does not check bounds * Possibly checks bounds

of the content variables of the content variables

10/23/24 Dictionaries

Dicts vs Objects

id2
RGB
red’ 255
'green’ 128
'blue’ 0
* Can add new variables » Variables fixed (sort-of)
* Does not check bounds * Possibly checks bounds

of the content variables of the content variables

10/23/24 Dictionaries

Question Time!

e d={'0%A", 0:'B', 1.'C' }
 What 1s the value d[0]?

A:'A

B: 'B'

C:'C’

D: ERROR

E: I don’t know

10/23/24 Dictionaries

Question Time!

e d={'0%'A", 0:'B', 1.'C" }

 What 1s the value d[0]?

A:'A
B
C:.'C

D: ERROR

E: I don’t know

10/23/24

» d={0'A", 1.'B", 2:'C")

 What 1s the value d[0:2]?

A: {0:'A', 1.'B'}

B: {0:'A") 1:'B', 2:'C'}
C: [IAI,IBI]

D: ERROR

E: I don’t know

Dictionaries

12

Question Time!

e d={'0%'A", 0:'B', 1.'C" }

 What 1s the value d[0]?

A:'A
B
C:.'C

D: ERROR

E: I don’t know

10/23/24

» d={0'A", 1.'B", 2:'C")

A: {0:'A', 1.'B'}

B: {0:'A', 1:'B', 2:'C"}
C: |A| |B|

D: ERROR

E: I don’t know

Dictionaries

 What 1s the value d[0:2]?

13

Dictionaries: Iterable, but not Sliceable

» Can loop over a dict

* Only gives you the keys

= Use key to access value

 Can iterate over values

= Method: d.values()

= But no way to get key

= Values are not unique

10/23/24

Dictionaries

for k in d:

Loops over keys
print(k) # key
print(d[k]) # value

To loop over values only
for v in d.valuesQ):
| print(v) # value

14

Other Iterator Methods

 Keys: d.keysQ for k in d.keysQ:

Loops over keys

| print(k) # key
= Good for extraction print(d[k]) # value

" keys = list(d.keys())

= Sames a normal loop

e Ttems: d.items() for pair in d.items():
print(pair[0]) # key

= Gives key-value pairs print(pair[1]) # value

= Elements are tuples
= Specialized uses

10/23/24 Dictionaries

15

Other Iterator Methods

 Keys: d.keysQ for k in d.keysQ:

Loops over keys

| print(k) # key
* Good for extraction maind AN o]0

= Sames a normal loop

= keys , ,
So mostly like loops over lists

» Items: d.items() Ior pair In d.1ems():
print(pair[0]) # key

= Gives key-value pairs print(pair[1]) # value

= Elements are tuples
= Specialized uses

10/23/24 Dictionaries

16

Dictionaries and Fruitful Functions

 Dictionaries handled similar to lists
= Go over dictionary (keys) with for-loop
= Use accumulator to gather the results

* Only difference 1s how to access value
= Remember, loop variable 1s keys
= Use keys to access the values

= But otherwise the same

10/23/24 Dictionaries

17

Dictionary Loop with Accumulator

def max_grade(grades):
"""Returns max grade in the grade dictionary

Precondition: grades has netids as keys, ints as values™
maximum = 0 # Accumulator

For each student
if student grade exceeds maximum

make that grade the new maximum

return maximum

10/23/24 Dictionaries

18

Dictionary Loop with Accumulator

def max_grade(grades):
"""Returns max grade in the grade dictionary

Precondition: grades has netids as keys, ints as values™"
maximum = 0 # Accumulator
Loop over keys
for k in grades:
if grades[k] > maximum:
’ maximum = grades|[K]

return maximum

10/23/24 Dictionaries

19

Another Example

def netids_above_cutoff(grades,cutoff):
"""Returns list of netids with grades above or equal cutoff

Precondition: grades has netids as keys, ints as values.
cutoff is an int."""
result =[] # Accumulator

For each student
if student’s grade is above cutoff
add student to the result

return result

10/23/24 Dictionaries

20

Another Example

def netids_above_cutoff(grades,cutoff):
"""Returns list of netids with grades above or equal cutoff

Precondition: grades has netids as keys, ints as values.
cutoff is an int."""
result = [] # Accumulator

for k in grades:
if grades[k] >= cutoff:
’ result.append(k) # Add key to the list result

return result

10/23/24 Dictionaries

21

Dictionaries and Mutable Functions

 Restrictions are different than list

= Okay to loop over dictionary to change

" You are looping over keys, not values
= Like looping over positions
* But you may not add or remove keys!

" Any attempt to do this will fail

= Have to create a key list if you want this

10/23/24 Dictionaries 22

A Subtle Difference

-—)

<< First < Back

d = {1:2)

for k in d.keys():

d[k+1] = d[k]+1

Program terminated

RuntimeError: dictionary changed size during iteration

d = {1:2}
for k in list(d.keys()):

<< First < Back

line that has just executed
==) next line to execute

10/23/24

d[k+1] = d[k]+1

Program terminated

Dictionaries

Globals Objects
global dict
d & —~ 12
k |1
2 3
Frames
Globals Objects
global dict
d & —~ 12
k 1
2 3
Frames

23

But This is Okay

def add_bonus(grades,bonus):
""Gives bonus points to everyone in grades

bonus is an int."™"
No accumulator. This is a procedure

for student in grades:
Modifies the dictionary, but does not change keys
grades[student] = grades[student]+bonus

10/23/24 Dictionaries

Precondition: grades has netids as keys, ints as values.

24

Another Example

def merge(dict1,dictR):
""Updates dictl to include the contents of dictR.

If a key is already in dict1, then assign the max of dictl, dict?

Precondition: dict1, dict® have str as keys, int as values."""
for key in dict?:

Looping over dict?; safe to modify dict1

if key in dict1:

’ dict1[key] = max(dict1[key],dictd[key])

else:

‘ dict 1[key] = dict2[key]

10/23/24 Dictionaries

25

Nesting Dictionaries

 Remember, values can be anything
= Only restrictions are on the keys

* Values can be lists (Visualizer)
=d={"a"[1,R], 'D"[3,4]}

* Values can be other dicts (Visualizer)
s d={'a:{'c"1,'d:2}, 'b":{'e 3,14})

* Access rules similar to nested lists
= Example: d['a']['d'] = 10

10/23/24 Diction

26

Example: JSON File

{ "wind" : { A Nested J * JSON: File w/ Python dict

"speed" : 13.0, Dictionary = Actually, minor differences
}crosswmd : 5.0 . WG&thBI’.jSOIlI
W Nested
Sk{y 3l List = Weather measurements
"cover" : "elouds” at Ithaca Airport (2017)
"type" : "broken", = Keys: Times (Each hour)
} "height” - 1200.0 = Values: Weather readings
{ e This 1s a nested JSON
”t " : " tH’ . . .
"h}gi);ht” :OIV Se(r)%a(s) = Values are also dictionaries
h Nested = Containing more dictionaries
\ | Dictionary = And also containing lists

10/23/24 Dictionaries 27

JSONSs vs Dictionaries

* JSONSs look like dictionaries, but are not same
= JSONSs are strings (to send over internet)
= Dictionaries are a type with 1ts own operations

* But you can go back and forth between them

>>> import json # The json module in Python
>>>d = json.loads(s) # Converts JSON s to dict d
>>> g = json.dumps(d) # Converts dict d to JSON s

 So we often think of the two as the same
= JSON is to dict as CSV 1s to nested lists

10/23/24 Dictionaries

28

Navigating this File

|

{
"wind" : {
"speed" : 13.0,
"crosswind" : 5.0
!5
"sky" [
{
"cover" : "clouds",
"type" : "broken",
"height" : 1200.0
!5
{ Access this
"type" a value
"height" : Novoro
}
]
}

10/23/24

 Letd be the dict to left
 Need to access a value

« How do we do it?

A: d['height']

B: d['height']['sky']
C: d['sky']['height']
D: d['sky'][0]['height']
E: I don’t know

Dictionaries

29

Navigating this File

{ Let d be the dict to left

"wind" : {
"speed" : 13.0,
"crosswind" : 5.0

e Need to access a value

; « How do we do it?

"sky":[<J Thisisalist |
{

"cover" : "clouds",

"type" : "broken",
"height" : 1200.0

type™: value

{ Access this }
"height" :Novoro

10/23/24 Dictionaries

A: d['height']

B: d['height']['sky’]

C: d['sky'I['height']

[D: dI'sky 101 'height] |
E: 1don’t know

Dictionaries and Recursion

* Dictionaries are not sliceable

= Makes it difficult to do divide and conquer
= So rare to be used 1n recursion by itself

= Often the answer to a recursion, not the input

* However, the key list is sliceable

= Can recurse on key list, not the dict
= This requires a helper function

= Helper 1s recursive, not the main function

10/23/24 Dictionaries

31

The Recursive Version

def max_grade(grades):
"""Returns max grade in the grade dictionary

Precondition: grades has netids as keys, ints as values™

WE CANNOT SLICE A DICTIONARY
We need to pull out keys and use a recursive helper
netids = list(grades.keys())

return max_grade_helper(netids,grades)

10/23/24 Dictionaries

32

The Recursive Version

def max_grade_helper(netids,grades):
"""Returns max grade among given netids

Precond: netids a list of keys in grades, grades a dict w/ int values"™"
Process small data

if len(netids) <= 1:
return grades[netids[O]] if len(netids) == 1 else 0

Break it up into left and right

Combine the answers

10/23/24 Dictionaries

33

The Recursive Version

def max_grade_helper(netids,grades):
"""Returns max grade among given netids

Precond: netids a list of keys in grades, grades a dict w/ int values"™"
Process small data

if len(netids) <= 1:
return grades[netids[O]] if len(netids) == 1 else 0

Break it up into left and right
left = grades[netids[O]]
right = max_grade_helper(netids[1:],grades)

Combine the answers

10/23/24 Dictionaries

34

The Recursive Version

def max_grade_helper(netids,grades):
"""Returns max grade among given netids

Precond: netids a list of keys in grades, grades a dict w/ int values"™"
Process small data

if len(netids) <= 1:
return grades[netids[O]] if len(netids) == 1 else 0

Break it up into left and right
left = grades[netids[O]]
right = max_grade_helper(netids[1:],grades)

Combine the answers
return max(left,right)

10/23/24 Dictionaries

35

