
10/23/24

1

Key-Value Pairs

• The last built-in type: dictionary (or dict)
§ One of the most important in all of Python
§ Like a list, but built of key-value pairs

• Keys: Unique identifiers
§ Think social security number
§ At Cornell we have netids: jrs1

• Values: Non-unique Python values
§ John Smith (class ’13) is jrs1
§ John Smith (class ’16) is jrs2

Idea: Lookup
values by keys

1

Basic Syntax

• Create with format: {k1:v1, k2:v2, …}
§ Both keys and values must exist
§ Ex: d={‘jrs1':'John',’jrs2':'John','wmw2':'Walker'}

• Keys must be non-mutable
§ ints, floats, bools, strings, tuples
§ Not lists or custom objects
§ Changing a key’s contents hurts lookup

• Values can be anything

2

Using Dictionaries (Type dict)

• Access elts. like a list
§ d['jrs1'] evals to 'John’
§ d['jrs2'] does too
§ d['wmw2'] evals to 'Walker'
§ d['abc1'] is an error

• Can test if a key exists
§ 'jrs1’ in d evals to True
§ 'abc1' in d evals to False

• But cannot slice ranges!

d = {'js1':'John','js2':'John',
 'wmw2':'Walker'}

'wmw2'

id8

'John'

'John'

'Walker'

dict

'jrs2'

'jrs1'

Key-Value order in
folder is not important

id8d

3

Dictionaries Can be Modified

• Can reassign values
§ d['jrs1'] = 'Jane’
§ Very similar to lists

• Can add new keys
§ d[‘aaa1'] = 'Allen’
§ Do not think of order

• Can delete keys
§ del d['wmw2’]
§ Deletes both key, value

d = {'jrs1':'John','jrs2':'John',
 'wmw2':'Walker'}

'wmw2'

id8

'Jane'

'John'

'Walker'

dict

'jrs2'

'jrs1'

'aaa1' 'Allen'
✗ ✗

id8d

4

Dictionaries: Iterable, but not Sliceable

• Can loop over a dict
§ Only gives you the keys
§ Use key to access value

• Can iterate over values
§ Method: d.values()
§ But no way to get key
§ Values are not unique

for k in d:
 # Loops over keys
 print(k) # key
 print(d[k]) # value

To loop over values only
for v in d.values():
 print(v) # value

5

Dictionary Loop with Accumulator

def max_grade(grades):
 """Returns max grade in the grade dictionary

 Precondition: grades has netids as keys, ints as values"""
 maximum = 0 # Accumulator
 # Loop over keys
 for k in grades:
 if grades[k] > maximum:
 maximum = grades[k]

 return maximum

6

10/23/24

2

Dictionaries and Mutable Functions

• Restrictions are different than list
§ Okay to loop over dictionary to change
§ You are looping over keys, not values
§ Like looping over positions

• But you may not add or remove keys!
§ Any attempt to do this will fail
§ Have to create a key list if you want this

7

But This is Okay

def add_bonus(grades,bonus):
 """Gives bonus points to everyone in grades

 Precondition: grades has netids as keys, ints as values.
 bonus is an int."""
 # No accumulator. This is a procedure

 for student in grades:
 # Modifies the dictionary, but does not change keys
 grades[student] = grades[student]+bonus

8

Nesting Dictionaries

• Remember, values can be anything
§ Only restrictions are on the keys

• Values can be lists (Visualizer)
§ d = {'a':[1,2], 'b':[3,4]}

• Values can be other dicts (Visualizer)
§ d = {'a':{'c':1,'d':2}, 'b':{'e':3,'f':4}}

• Access rules similar to nested lists
§ Example: d['a']['d'] = 10

9

Example: JSON File
{
 "wind" : {
 "speed" : 13.0,
 "crosswind" : 5.0
 },
 "sky" : [
 {
 "cover" : "clouds",
 "type" : "broken",
 "height" : 1200.0
 },
 {
 "type" : "overcast",
 "height" : 1800.0
 }
]
}

• JSON: File w/ Python dict
§ Actually, minor differences

• weather.json:
§ Weather measurements

at Ithaca Airport (2017)
§ Keys: Times (Each hour)
§ Values: Weather readings

• This is a nested JSON
§ Values are also dictionaries
§ Containing more dictionaries
§ And also containing lists

Nested
Dictionary

Nested
List

Nested
Dictionary

10

Dictionaries and Recursion

• Dictionaries are not sliceable
§ Makes it difficult to do divide and conquer
§ So rare to be used in recursion by itself
§ Often the answer to a recursion, not the input

• However, the key list is sliceable
§ Can recurse on key list, not the dict
§ This requires a helper function
§ Helper is recursive, not the main function

11

The Recursive Version

def max_grade_helper(netids,grades):
 """Returns max grade among given netids

 Precond: netids a list of keys in grades, grades a dict w/ int values"""
 # Process small data
 if len(netids) <= 1:
 return grades[netids[0]] if len(netids) == 1 else 0

 # Break it up into left and right
 left = grades[netids[0]]
 right = max_grade_helper(netids[1:],grades)

 # Combine the answers
 return max(left,right)

12

