
For-Loops

Lecture 13

Announcements for This Lecture

(Optional) Videos

• Videos 16.1-16.7 for today
• Lesson 18 next time

Assignments

• A2 is now graded
§ Access it in Gradescope
§ Graded out of 50 points
§ Mean: 44.5, Median: 47
§ A: 46 (55%), B: 37 (27%)

• A3 due this Thursday
§ Time to work on it in lab
§ Will grade over break

10/8/24 For Loops 2

• Prelim, 10/17 at 7:30 pm
§ Material up to 10/3
§ Study guide is posted
§ Fill out the conflict form!

• Review this Wednesday
§ 5pm in Hollister B14

Example: Summing the Elements of a List

def sum(thelist):
 """Returns: the sum of all elements in thelist
 Precondition: thelist is a list of all numbers
 (either floats or ints)"""
 pass # Stub to be implemented

10/8/24 For Loops 3

Remember our approach:
Outline first; then implement

Example: Summing the Elements of a List

def sum(thelist):
 """Returns: the sum of all elements in thelist
 Precondition: thelist is a list of all numbers
 (either floats or ints)"""
 # Create a variable to hold result (start at 0)
 # Add each list element to variable
 # Return the variable

10/8/24 For Loops 4

Example: Summing the Elements of a List

def sum(thelist):
 """Returns: the sum of all elements in thelist
 Precondition: thelist is a list of all numbers
 (either floats or ints)"""
 result = 0
 result = result + thelist[0]
 result = result + thelist[1]
 …
 return result
10/8/24 For Loops 5

There is a
problem here

Working with Sequences

• Sequences are potentially unbounded
§ Number of elements inside them is not fixed
§ Functions must handle sequences of different lengths
§ Example: sum([1,2,3]) vs. sum([4,5,6,7,8,9,10])

• Cannot process with fixed number of lines
§ Each line of code can handle at most one element
§ What if # of elements > # of lines of code?

• We need a new control structure

10/8/24 For Loops 6

The For-Loop

Create local var x
x = seqn[0]
print(x)
x = seqn[1]
print(x)
…
x = seqn[len(seqn)-1]
print(x)

Write as a for-loop
for x in seqn:
 print(x)

• iterable: seqn
• loop variable: x
• body: print(x)

Key ConceptsNot valid
Python

10/8/24 For Loops 7

Executing a For-Loop

The for-loop:

 for x in seqn:
 print(x)

• iterable: seqn
• loop variable: x
• body: print(x)

seqn has
more elts

put next
elt in x

True

False
print(x)

Usually
a sequence

10/8/24 For Loops 8

Example: Summing the Elements of a List

def sum(thelist):
 """Returns: the sum of all elements in thelist
 Precondition: thelist is a list of all numbers
 (either floats or ints)"""
 # Create a variable to hold result (start at 0)
 # Add each list element to variable
 # Return the variable

10/8/24 For Loops 9

Example: Summing the Elements of a List

def sum(thelist):
 """Returns: the sum of all elements in thelist
 Precondition: thelist is a list of all numbers
 (either floats or ints)"""
 result = 0

 for x in thelist:
 result = result + x

 return result
10/8/24 For Loops 10

• iterable: thelist
• loop variable: x
• body: result=result+x

Example: Summing the Elements of a List

def sum(thelist):
 """Returns: the sum of all elements in thelist
 Precondition: thelist is a list of all numbers
 (either floats or ints)"""
 result = 0

 for x in thelist:
 result = result + x

 return result
10/8/24 For Loops 11

• iterable: thelist
• loop variable: x
• body: result=result+x

Accumulator
variable

The Accumulator

• In a slides saw the accumulator
§ Variable to hold a final (numeric) answer
§ For-loop added to variable at each step

• This is a common design pattern
§ Popular way to compute statistics
§ Counting, averaging, etc.

• It is not just limited to numbers
§ Works on every type that can be added
§ This means strings, lists and tuples!

10/8/24 For Loops 12

Example: String-Based Accumulator

def despace(s):
 """Returns: s but with its spaces removed
 Precondition: s is a string"""
 # Create an empty string accumulator
 # For each character x of s
 # Check if x is a space
 # Add it to accumulator if not

10/8/24 For Loops 13

Example: String-Based Accumulator

def despace(s):
 """Returns: s but with its spaces removed
 Precondition: s is a string"""
 result = ''
 for x in s:
 if x != ' ':
 result = result+x
 return result

Body

10/8/24 For Loops 14

Modifying the Contents of a List

def add_one(thelist):
 """(Procedure) Adds 1 to every element in the list
 Precondition: thelist is a list of all numbers
 (either floats or ints)"""
 for x in thelist:
 x = x+1
 # procedure; no return

10/8/24 For Loops 15

DOES NOT WORK!

For Loops and Call Frames

1. def add_one(thelist):
2. """Adds 1 to every elt
3. Pre: thelist all nums"""
4. for x in thelist:
5. x = x+1

add_one(seq):

10/8/24 For Loops 16

0
1
2

id4

5
4
7

seq id4

add_one

thelist

4

id4

For Loops and Call Frames

1. def add_one(thelist):
2. """Adds 1 to every elt
3. Pre: thelist all nums"""
4. for x in thelist:
5. x = x+1

add_one(seq):

10/8/24 For Loops 17

0
1
2

id4

5
4
7

seq id4

add_one

thelist

5

id4

x 5

For Loops and Call Frames

1. def add_one(thelist):
2. """Adds 1 to every elt
3. Pre: thelist all nums"""
4. for x in thelist:
5. x = x+1

add_one(seq):

10/8/24 For Loops 18

0
1
2

id4

5
4
7

seq id4

add_one

thelist

4

id4

x 6

Increments x in frame
Does not affect folder

Loop back
to line 4

For Loops and Call Frames

1. def add_one(thelist):
2. """Adds 1 to every elt
3. Pre: thelist all nums"""
4. for x in thelist:
5. x = x+1

add_one(seq):

10/8/24 For Loops 19

0
1
2

id4

5
4
7

seq id4

add_one

thelist

5

id4

x 4

Next element stored in x.
Previous calculation lost.

For Loops and Call Frames

1. def add_one(thelist):
2. """Adds 1 to every elt
3. Pre: thelist all nums"""
4. for x in thelist:
5. x = x+1

add_one(seq):

10/8/24 For Loops 20

0
1
2

id4

5
4
7

seq id4

add_one

thelist

4

id4

x 5

Loop back
to line 4

For Loops and Call Frames

1. def add_one(thelist):
2. """Adds 1 to every elt
3. Pre: thelist all nums"""
4. for x in thelist:
5. x = x+1

add_one(seq):

10/8/24 For Loops 21

0
1
2

id4

5
4
7

seq id4

add_one

thelist

5

id4

x 7

Next element stored in x.
Previous calculation lost.

For Loops and Call Frames

1. def add_one(thelist):
2. """Adds 1 to every elt
3. Pre: thelist all nums"""
4. for x in thelist:
5. x = x+1

add_one(seq):

10/8/24 For Loops 22

0
1
2

id4

5
4
7

seq id4

add_one

thelist

4

id4

x 8

Loop back
to line 4

For Loops and Call Frames

1. def add_one(thelist):
2. """Adds 1 to every elt
3. Pre: thelist all nums"""
4. for x in thelist:
5. x = x+1

add_one(seq):

10/8/24 For Loops 23

0
1
2

id4

5
4
7

seq id4

add_one

thelist id4

x 8

Loop is completed.
Nothing new put in x.

For Loops and Call Frames

1. def add_one(thelist):
2. """Adds 1 to every elt
3. Pre: thelist all nums"""
4. for x in thelist:
5. x = x+1

add_one(seq):

10/8/24 For Loops 24

0
1
2

id4

5
4
7

seq id4

ERASE WHOLE FRAME

No changes
 to folder

On The Other Hand

def copy_add_one(thelist):
 """Returns: copy with 1 added to every element
 Precondition: thelist is a list of all numbers
 (either floats or ints)"""
 mycopy = [] # accumulator
 for x in thelist:
 x = x+1
 mycopy.append(x) # add to end of accumulator
 return mycopy
10/8/24 For Loops 25

Accumulator keeps
result from being lost

How Can We Modify A List?

• Never modify iterable!
• This is an infinite loop:

 for x in thelist:
 thelist.append(1)

• Need a second sequence
• How about the positions?

 thelist = [5, 2, 7, 1]
 thepos = [0, 1, 2, 3]

 for x in thepos:
 thelist[x] = thelist[x]+1

10/8/24 For Loops 26

Try in Python Tutor
to see what happens

How Can We Modify A List?

• Never modify iterable!
• This is an infinite loop:

 for x in thelist:
 thelist.append(1)

• Need a second sequence
• How about the positions?

 thelist = [5, 2, 7, 1]
 thepos = [0, 1, 2, 3]

 for x in thepos:
 thelist[x] = thelist[x]+1

10/8/24 For Loops 27

Try in Python Tutor
to see what happens

This is the Motivation for Iterables

• Iterables are objects
§ Contain data like a list
§ But cannot slice them

• Have list-like properties
§ Can use then in a for-loop
§ Can convert them to lists
§ mylist = list(myiterable)

• Example: Files
§ Use open() to create object
§ Makes iterable for reading

10/8/24 For Loops 28

0
1
2

id1

5
4
7

seq id1

id2
alt id2

?

Iterables, Lists, and For-Loops

>>> file = open('sample.txt')
 >>> list(file)
 ['This is line 1\n',
 'This is line 2\n']
 >>> file = open('sample.txt')
 >>> for line in file:
 … print(line)
 This is line one

 This is line two

10/8/24 For Loops 29

0
1
2

id1

5
4
7

seq id1

id2
alt id2

?print adds \n
in addition to
one from file

The Range Iterable

• range(x)
§ Creates an iterable
§ Stores [0,1,…,x-1]
§ But not a list!
§ But try list(range(x))

• range(a,b)
§ Stores [a,…,b-1]

• range(a,b,n)
§ Stores [a,a+n,…,b-1]

• Very versatile tool
• Great for processing ints

 total = 0
 # add the squares of ints

in range 2..200 to total

 for x in range(2,201):
 total = total + x*x

10/8/24 For Loops 30

Accumulator

Modifying the Contents of a List

def add_one(thelist):
 """(Procedure) Adds 1 to every element in the list
 Precondition: thelist is a list of all numbers
 (either floats or ints)"""
 size = len(thelist)
 for k in range(size):
 thelist[k] = thelist[k]+1
 # procedure; no return

10/8/24 For Loops 31

WORKS!

Iterator of list
positions (safe)

Important Concept in CS:
Doing Things Repeatedly

1. Process each item in a sequence
§ Compute aggregate statistics for a dataset,

such as the mean, median, standard deviation, etc.
§ Send everyone in a Facebook group an appointment time

2. Perform n trials or get n samples.
§ A4: draw a triangle six times to make a hexagon
§ Run a protein-folding simulation for 106 time steps

3. Do something an unknown
number of times
§ CUAUV team, vehicle keeps

moving until reached its goal
10/8/24 For Loops 32

Important Concept in CS:
Doing Things Repeatedly

1. Process each item in a sequence
§ Compute aggregate statistics for a dataset,

such as the mean, median, standard deviation, etc.
§ Send everyone in a Facebook group an appointment time

2. Perform n trials or get n samples.
§ A4: draw a triangle six times to make a hexagon
§ Run a protein-folding simulation for 106 time steps

3. Do something an unknown
number of times
§ CUAUV team, vehicle keeps

moving until reached its goal
10/8/24 For Loops 33

for x in sequence:
 process x

for x in range(n):
 do next thing

Cannot do this yet
Impossible w/ Python for

