Lecture &

Algorithm Design

Announcements For This Lecture

Assignment 1 Getting Help
* Due Sunday e Can work on 1t in lab
* Due before midnight = But still have prev lab

= Submit something... * Make sure you do both

= Last revision Sep. 24 * Consulting Hours

= But expect it to be busy
» Grades posted Tuesday

= First-come, first-served
* Complete the Survey One-on-Ones still going

* Must answer individually = Lots of spaces available

9/14/23 Algorithm Design

Announcements For This Lecture

Assignment 1 Getting Help
* Due Sunday * Can work on 1t in lab
* Due before midnight = But still have prev lab
= Sut \) both
e Will post Assignment 2 Friday.
. . . b
ety 1his 1s a handwritten assignment. eer:escyl
* Complete the Survey * One-on-Ones still going

* Must answer individually = Lots of spaces available

9/14/23 Algorithm Design

What Are Algorithms?

Algorithm Implementation

» Step-by-step instructions ¢ Program for an algorithm

= Not specific to a language * In a specific language
= Could be a cooking recipe = What we often call coding
* Qutline for a program * The filled in outline

* Good programmers can separate the two
= Work on the algorithm first

* Implement in language second

* Why approach strings as search-cut-glue

9/14/23 Algorithm Design 4

Difficulties With Programming

Syntax Errors Conceptual Errors

* Python can’t understand you ¢ Does what you say, not mean

 Examples: Examples:

= Forgetting a colon = Forgot last char in slice

= Not closing a parens = Used the wrong argument
* Common with beginners * Happens to everyone

= But can quickly train out = Large part of CS training

Proper algorithm design

reduces conceptual errors

9/14/23 Algorithm Design 5

Testing First Strategy

* Write the Tests First
Could be script or written by hand

e Take Small Steps
Do a little at a time; make use of placeholders

* Intersperse Programming and Testing
When you finish a step, test it immediately

* Separate Concerns
Do not move to a new step until current 1s done

9/14/23 Algorithm Design

Testing First Strategy

Write the Tests First
Could be script or written by hand

Take Small Sten

€rs

Separate Concerns
Do not move to a new step until current 1s done

9/14/23 Algorithm Design

Using Placeholders in Design

» Strategy: fill in definition a little at a time

 We start with a function stub

= Function that can be called but 1s unfinished

= Allows us to test while still working (later)

* All stubs must have a function header

= But t

ne definition body might be “empty”

= Certainly 1s when you get started

9/14/23

Algorithm Design

A Function Stub

def last_name_first(s):
"""Returns: copy of s in form 'last-name, 'first-name'’

Precondition: s is in form 'first-name last-name'’
with one blank between the two names™"

Finish the body

9/14/23 Algorithm Design

But it Cannot Really Be Empty

def last_name first(s):

. # Finish the body

* A function definition 1s only valid with a body
= (Single-line) comments do not count as body
= But doc-strings do count (part of help function)

* So you should always write in the specification

9/14/23 Algorithm Design 10

An Alternative: Pass

def last_name first(s):

=

* You can make the body non-empty with pass
" It 1s a command to “do nothing”
= Only purpose 1s to ensure there 1s a body

* You would remove 1t once you got started

9/14/23 Algorithm Design 11

Ideally: Use Both

def last_name_first(s):
"""Returns: copy of s in form 'last-name, 'first-name'’

Precondition: s is in form 'first-name last-name’
with one blank between the two names"""

pass

Now pass 1s a note that 1s unfinished.

Can leave 1t there until work 1s done.

9/14/23 Algorithm Design

12

Outlining Your Approach

» Recall the two types of errors you will have
= Syntax Errors: Python can’t understand you
* Conceptual Errors: Does what you say, not mean

* To remove conceptual errors, plan before code
= Create outline of the steps to carry out
= Write 1n this outline as comments

 This outline 1s called pseudocode

= English statements of what to do
= But corresponds to something simple in Python

9/14/23 Algorithm Design

13

Example: Reordering a String

def last_name first(s):

9/14/23

"""Returns: copy of s in form 'last-name, 'first-name’

Precondition: s is in form 'first-name last-name'
with one blank between the two names"""

Find the space between the two names

Cut out the first name

Cut out the last name
Glue them together with a comma

Algorithm Design

14

Example: Reordering a String

def last_name first(s):

9/14/23

"""Returns: copy of s in form 'last-name, 'first-name’

Precondition: s is in form 'first-name last-name'’
with one blank between the two names"™

end_first = s.find(" ")

Cut out the first name

Cut out the last name

Glue them together with a comma

Algorithm Design

15

Example: Reordering a String

def last_name first(s):

9/14/23

"""Returns: copy of s in form 'last-name, 'first-name'’

Precondition: s is in form 'first-name last-name'’
with one blank between the two names™"

end_first = s.find(" ")

first_name = s[:end_{first]

Cut out the last name

Glue them together with a comma

Algorithm Design

16

What is the Challenge?

* Pseudocode must correspond to Python

= Preferably implementable in one line

= Unhelpful: # Return the correct answer

 So what can we do?

= Depends on the types involved
= Different types have different operations
" You should memorize important operations

= Use these as building blocks

9/14/23 Algorithm Design 17

Case Study: Strings

* We can slice strings (s[a:b])
* We can glue together strings (+)

* We have a lot of string methods
"= We can search for characters
* We can count the number of characters
* We can pad strings

= We can strip padding

* Sometimes, we can cast to a new type

9/14/23 Algorithm Design

18

Early Testing

* Recall: Combine programming & testing
= After each step we should test
= But 1t 1s unfinished; answer 1s incorrect!

* Goal: ensure intermediate results expected
= Take an input from your testing plan
= Call the function on that input
= Look at the results at each step
= Make sure they are what you expect

* Add a temporary return value

9/14/23 Algorithm Design

19

Stubbed Returns

def last_name first(s):

9/14/23

"""Returns: copy of s in form 'last-name, 'first-name'
Precondition: s is in form 'first-name last-name'
with one blank between the two names"""

end_first = s.find(" ")

first = s[:end_first]

Cut out the last name

Glue them together with a comma

return first # Not the final answer

Algorithm Design

20

Working with Helpers

* Suppose you are unsure of a step
* You maybe have an 1dea for pseudocode
= But not sure 1f it easily converts to Python

* But you can specify what you want
= Specification means a new function!

= Create a specification stub for that function

= Put a call to it in the original function

* Now can lazily implement that function

9/14/23 Algorithm Design

21

Example: last name first

def last _name_ first(s):

"""Returns: copy of s in the form
'last-name, first-name'
Precondition: s is in the form
'first-name last-name' with

with one blank between names"""

Cut out the first name

Cut out the last name
Glue together with comma

Return the result

9/14/23 Algorithm Design

22

Example: last name first

def last_name first(s):

"""Returns: copy of s in the for
'last-name, first-name'
Precondition: s is in the fo
'first-name last-name' wit

with one blank betweerynames""”

def first_name(s):

"""Returns: first name in s
Precondition: s is in the form
'first-name last-name' with
one blank between names"""
pass

first 4 first_name(s)
Cut out the last name

Glue together with comma
return first # Stub

9/14/23 Algorithm Design

23

Example: last name first

def last_name first(s):

"""Returns: copy of s in the for
'last-name, first-name'
Precondition: s is in the fo
'first-name last-name' wit

with one blank betweerynames""”

def first_name(s):

"""Returns: first name in s
Precondition: s is in the form
'first-name last-name' with
one blank between names"""
end = s.find(' ")

return s[:end]

first 4 first_name(s)
Cut out the last name

Glue together with comma
return first # Stub

9/14/23 Algorithm Design

24

Concept of Top Down Design

* Function specification 1s given to you
= This cannot change at all
= Otherwise, you break the team

* But you break it up 1nto little problems
= Each naturally its own function

* YOU design the specification for each
* Implement and test each one

* Complete before the main function

9/14/23 Algorithm Design

25

Testing and Top Down Design

def test_first name():
"""Test procedure for first name(n)"""
result = name.first_name('Walker White')
introcs.assert_equals('Walker', result)

def test_last_name_ firstQ):
"""Test procedure for last_name_first(n)"""
result = name.last_name_first('Walker White'")
introcs.assert_equals('White, Walker', result)

9/14/23 Algorithm Design 26

A Word of Warning

* Do not go overboard with this technique
= Do not want a lot of one line functions

= Can make code harder to read in extreme
* Do 1t if the code is too long
* | personally have a one page rule
* [f more than that, turn part into a function
* Do it if you are repeating yourself a lot

* If you see the same code over and over
= Replace that code with a single function call

9/14/23 Algorithm Design

27

Exercise: Anglicizing an Integer

* anglicize(1) 1s “one”
 anglicize(15) 1s “fifteen”

 anglicize(123) 1s “one hundred twenty three”

* anglicize(10570) is “ten thousand five hundred
def anglicize(n):
"""Returns: the anglicization of int n.

Precondition: 0 <n < 1,000,000""
pass # ?2?

9/14/23 Algorithm Design

Exercise: Anglicizing an Integer

def anglicize(n):

9/14/23

"""Returns: the anglicization of int n.

Precondition: 0 < n < 1,000,000"""
if < 1000, provide an answer

if > 1000, break into hundreds, thousands parts
use the < 1000 answer for each part , and glue
together with "thousands" in between

return the result

Algorithm Design

29

Exercise: Anglicizing an Integer

def anglicize(n):

9/14/23

"""Returns: the anglicization of int n.

Precondition: 0 <n < 1,000,000™"

if n < 1000: # no thousands place

. return anglicize1000(n)

elif n % 1000 == 0: # no hundreds, only thousands
- return anglicize1000(n/1000) + ' thousand'
else: # mix the two

return (anglicize1000(n/1000) + ' thousand '+
anglicize1000(n))

Algorithm Design 30

Exercise: Anglicizing an Integer

def anglicize(n):

9/14/23

"""Returns: the angli(

Now implement this.

Precondition: 0 < n < EEENIESE AN 0|
if n < 1000: # n#@rousands place
| return[anglicizelOOO(n)]

elif n % 1000 == 0: # no hundreds, only thousands
- return anglicize1000(n/1000) + ' thousand'
else: # mix the two

return (anglicize1000(n/1000) + ' thousand '+
anglicize1000(n))

Algorithm Design 31

