What Are Algorithms?

Algorithm Implementation

Difficulties With Programming

 Step-by-step instructions ¢ Program for an algorithm

= Not specific to a language = In a specific language
= Could be a cooking recipe = What we often call coding
* Outline for a program * The filled in outline

* Good programmers can separate the two
= Work on the algorithm first
= Implement in language second

» Why approach strings as search-cut-glue

Syntax Errors Conceptual Errors
+ Python can’t understand you ¢ Does what you say, not mean
+ Examples: + Examples:

= Forgetting a colon = Forgot last char in slice

= Not closing a parens = Used the wrong argument
+ Common with beginners

= But can quickly train out

+ Happens to everyone
= Large part of CS training

Proper algorithm design

reduces conceptual errors

Testing First Strategy

* Write the Tests First
Could be script or written by hand
* Take Small Steps
Do a little at a time; make use of placeholders
* Intersperse Programming and Testing
When you finish a step, test it immediately

* Separate Concerns
Do not move to a new step until current is done

Using Placeholders in Design

* Strategy: fill in definition a little at a time
* We start with a function stub

= Function that can be called but is unfinished

= Allows us to test while still working (later)
 All stubs must have a function header

= But the definition body might be “empty”

= Certainly is when you get started

A Function Stub

def last_name_first(s):
"""Returns: copy of s in form 'last-name, 'first-name'

Precondition: s is in form 'first-name last-name'
with one blank between the two names"""

pass

Now pass is a note that is unfinished.

Can leave it there until work is done.

Outlining Your Approach

def last_name_first(s):
""Returns: copy of s in form 'last-name, 'first-name'

Precondition: s is in form 'first-name last-name'
with one blank between the two names"""

Find the space between the two names

Cut out the first name
Cut out the last name

Glue them together with a comma

What is the Challenge?

Stubbed Returns for Incremental Testing

* Pseudocode must correspond to Python
= Preferably implementable in one line
= Unhelpful: # Return the correct answer

* So what can we do?
= Depends on the types involved
= Different types have different operations
= You should memorize important operations
= Use these as building blocks

def last_name_first(s):
""Returns: copy of s in form 'last-name, 'first-name'

Precondition: s is in form 'first-name last-name'
with one blank between the two names""
end_first = introcs.find_str(s,' ")

first = s[:end_first]

Cut out the last name

Glue them together with a comma

return first # Not the final answer

Working with Helpers

Example: last name_first

* Suppose you are unsure of a step
= You maybe have an idea for pseudocode
= But not sure if it easily converts to Python
* But you can specify what you want
= Specification means a new function!
= Create a specification stub for that function
= Put a call to it in the original function

* Now can lazily implement that function

def last_name_first(s):
"""Returns: copy of s in the for:
'last-name, first-name'
Precondition: s is in the fo;
'first-name last-name' wit)

with one blank between/ames""”

first o first_name(s)

Cut out the Iast name

Glue together with comma
return first # Stub

def first_name(s):

"""Returns: first name in s
Precondition: s is in the form
'first-name last-name' with
one blank between names"""
end = s.find(')

return s[:end]

10

A Word of Warning

Exercise: Anglicizing an Integer

* Do not go overboard with this technique
= Do not want a lot of one line functions
= Can make code harder to read in extreme

* Do it if the code is too long
= | personally have a one page rule
= [f more than that, turn part into a function

* Do it if you are repeating yourself a lot
= If you see the same code over and over
= Replace that code with a single function call

anglicize(1) is “one”

def anglicize(n):

anglicize(15) is “fifteen”
anglicize(123) is “one hundred twenty three”
anglicize(10570) is “ten thousand five hundred

""Returns: the anglicization of int n.
Precondition: 0 <n < 1,000,000"""

pass # 299

11

12

