
Conditionals &
Control Flow

Lecture 7



Announcements For This Lecture

Assignment 1
• Should be working on it

§ Have covered everything
§ Look at lab for more help

• Due Sunday at mid.
§ No new lab Thu/Fri 
§ Can work at it during lab

• One-on-Ones ongoing
§ Lots of spaces available

Partners
• You must pair in CMS
• Go into the submission

§ Request your partner
§ Other person accepts

• Sent out several e-mails
• Will drop next week!

29/12/23 Conditionals & Program Flow

AI Quiz



Testing last_name_first(n)

# test procedure
def test_last_name_first():
    """Test procedure for last_name_first(n)"""
    result = name.last_name_first('Walker White')
    introcs.assert_equals('White, Walker', result)
    result = name.last_name_first('Walker            White')        
    introcs.assert_equals('White, Walker', result)

# Script code
test_last_name_first()
print('Module name passed all tests.’)

9/12/23 Conditionals & Program Flow 3

Call function 
on test input

Compare to 
expected output

Call test procedure 
to activate the test



Types of Testing

Black Box Testing

• Function is “opaque”
§ Test looks at what it does
§ Fruitful: what it returns
§ Procedure: what changes

• Example: Unit tests
• Problems:

§ Are the tests everything?
§ What caused the error?

White Box Testing

• Function is “transparent”
§ Tests/debugging takes 

place inside of function
§ Focuses on where error is

• Example: Use of print
• Problems:

§ Much harder to do
§ Must remove when done

9/12/23 Conditionals & Program Flow 4



Types of Testing

Black Box Testing

• Function is “opaque”
§ Test looks at what it does
§ Fruitful: what it returns
§ Procedure: what changes

• Example: Unit tests
• Problems:

§ Are the tests everything?
§ What caused the error?

White Box Testing

• Function is “transparent”
§ Tests/debugging takes 

place inside of function
§ Focuses on where error is

• Example: Use of print
• Problems:

§ Much harder to do
§ Must remove when done

Works on 
functions you 
did not define

Can find the 
bug location 
in function

9/12/23 Conditionals & Program Flow 5



Finding the Error

• Unit tests cannot find the source of an error
• Idea: “Visualize” the program with print statements

def last_name_first(n):
   """Returns: copy of n in form 'last-name, first-name' """
    end_first = n.find(' ')
    print(end_first)
    first = n[:end_first]
    print('first is '+str(first))
    last  = n[end_first+1:]
    print('last is '+str(last))
    return last+', '+first

9/12/23 Conditionals & Program Flow 6

Print variable after 
each assignment

Optional: Annotate 
value to make it 
easier to identify



How to Use the Results

• Goal of white box testing is error location
§ Want to identify the exact line with the error
§ Then you look ‘real hard’ at the line to find error
§ What you are doing in lab next week

• But similar approach to black box testing
§ At each line you have expected print result
§ Compare it to the received print result
§ Line before first mistake is likely the error

9/12/23 Conditionals & Program Flow 7



Warning About Print Statements

• Must remove them when you are done
§ Not part of the specification (violation)
§ Slow everything down unnecessarily
§ App Store will reject an app with prints

• But you might want them again later
§ Solution: “comment them out”
§ You can always uncomment later

9/12/23 Conditionals & Program Flow 8



Structure vs. Flow

Program Structure

• Order code is presented 
§ Order statements are listed
§ Inside/outside of function
§ Will see other ways…

• Defines possibilities over  
multiple executions

Program Flow

• Order code is executed
§ Not the same as structure
§ Some statements duplicated
§ Some statements skipped

• Defines what happens in a 
single execution

9/12/23 Conditionals & Program Flow 9

Have already seen this 
difference with functions



Structure vs. Flow: Example

Program Structure

def foo():
 print('Hello')

# Script Code
foo()
foo()
foo()

Program Flow

> python foo.py
'Hello'
'Hello'
'Hello'

9/12/23 Conditionals & Program Flow 10

Statement 
listed once

Statement 
executed 3x

Bugs occur when flow does 
not match expectations



Conditionals: If-Statements

Format
if expression :
 statement
 …

  statement

Example
 # Put x in z if it is positive 
     if x > 0:
         z  = x

9/12/23 Conditionals & Program Flow 11

Execution: 

If expression is True, execute all statements indented underneath

Indent



Python Tutor Example

9/12/23 Conditionals & Program Flow 12



Conditionals: If-Else-Statements

Format
if expression :
 statement
 …
else:

  statement
 …

Example
   # Put max of x, y in z
     if x > y:
         z  = x
     else:
         z  = y

9/12/23 Conditionals & Program Flow 13

Execution: 
If expression is True, execute all statements indented under if. 
If expression is False, execute all statements indented under else.



Python Tutor Example

9/12/23 Conditionals & Program Flow 14



Conditionals: “Control Flow” Statements

if b : 

      s1 # statement
 s3

 if b :
      s1

 else:
       s2
 s3
9/12/23 Conditionals & Program Flow 15

s1

s3

s2

b

s1

s3

b Branch Point:
Evaluate & Choose

Statement: Execute

Flow
Program only 
takes one path 
each execution



Program Flow and Call Frames

def max(x,y):
      """Returns: max of x, y"""
      # simple implementation 
1    if x > y:
2        return x

3    return y

max(0,3):

9/12/23 Conditionals & Program Flow 16

max 1

x 0

y 3

Frame sequence 
depends on flow



Program Flow and Call Frames

def max(x,y):
      """Returns: max of x, y"""
      # simple implementation 
1    if x > y:
2        return x

3    return y

max(0,3):

9/12/23 Conditionals & Program Flow 17

max 3

x 0

y 3

Frame sequence 
depends on flow

Skips line 2



Program Flow and Call Frames

def max(x,y):
      """Returns: max of x, y"""
      # simple implementation 
1    if x > y:
2        return x

3    return y

max(0,3):

9/12/23 Conditionals & Program Flow 18

max

x 0

y 3

Frame sequence 
depends on flow

Skips line 2

RETURN

3



Program Flow vs. Local Variables

def max(x,y):
      """Returns: max of x, y""" 
      # swap x, y
      # put the larger in y
1    if x > y:
2        temp = x
3        x = y
4        y = temp

5    return y

• max(3,0):

9/12/23 Conditionals & Program Flow 19

max 1

x 3 y 0

Swaps max
into var y



Program Flow vs. Local Variables

def max(x,y):
      """Returns: max of x, y""" 
      # swap x, y
      # put the larger in y
1    if x > y:
2        temp = x
3        x = y
4        y = temp

5    return y

• max(3,0):

9/12/23 Conditionals & Program Flow 20

max 2

x 3 y 0

Swaps max
into var y



Program Flow vs. Local Variables

def max(x,y):
      """Returns: max of x, y""" 
      # swap x, y
      # put the larger in y
1    if x > y:
2        temp = x
3        x = y
4        y = temp

5    return y

• max(3,0):

9/12/23 Conditionals & Program Flow 21

max 3

x 3 y 0

temp 3

Swaps max
into var y



Program Flow vs. Local Variables

def max(x,y):
      """Returns: max of x, y""" 
      # swap x, y
      # put the larger in y
1    if x > y:
2        temp = x
3        x = y
4        y = temp

5    return y

• max(3,0):

9/12/23 Conditionals & Program Flow 22

max 4

x 0 y 0

temp 3

Swaps max
into var y



Program Flow vs. Local Variables

def max(x,y):
      """Returns: max of x, y""" 
      # swap x, y
      # put the larger in y
1    if x > y:
2        temp = x
3        x = y
4        y = temp

5    return y

• max(3,0):

9/12/23 Conditionals & Program Flow 23

max 5

x 0 y 3

temp 3

Swaps max
into var y



Program Flow vs. Local Variables

def max(x,y):
      """Returns: max of x, y""" 
      # swap x, y
      # put the larger in y
1    if x > y:
2        temp = x
3        x = y
4        y = temp

5    return y

• max(3,0):

9/12/23 Conditionals & Program Flow 24

max

x 0 y 3

RETURN 3

temp 3

Swaps max
into var y



Program Flow vs. Local Variables

def max(x,y):
      """Returns: max of x, y""" 
      # swap x, y
      # put the larger in y
1    if x > y:
2        temp = x
3        x = y
4        y = temp

5    return temp

• Value of max(3,0)?

9/12/23 Conditionals & Program Flow 25

A: 3
B: 0
C: Error!
D: I do not know



Program Flow vs. Local Variables

def max(x,y):
      """Returns: max of x, y""" 
      # swap x, y
      # put the larger in y
1    if x > y:
2        temp = x
3        x = y
4        y = temp

5    return temp

• Value of max(3,0)?

9/12/23 Conditionals & Program Flow 26

A: 3
B: 0
C: Error!
D: I do not know

CORRECT

• Local variables last until
§ They are deleted or
§ End of the function

• Even if defined inside if



Program Flow vs. Local Variables

def max(x,y):
      """Returns: max of x, y""" 
      # swap x, y
      # put the larger in y
1    if x > y:
2        temp = x
3        x = y
4        y = temp

5    return temp

• Value of max(0,3)?

9/12/23 Conditionals & Program Flow 27

A: 3
B: 0
C: Error!
D: I do not know



Program Flow vs. Local Variables

def max(x,y):
      """Returns: max of x, y""" 
      # swap x, y
      # put the larger in y
1    if x > y:
2        temp = x
3        x = y
4        y = temp

5    return temp

• Value of max(0,3)?

9/12/23 Conditionals & Program Flow 28

A: 3
B: 0
C: Error!
D: I do not know

CORRECT

• Variable existence 
depends on flow

• Understanding flow 
is important in testing



Testing and Code Coverage

• Typically, tests are written from specification
§ This is because they should be written first
§ You run these tests while you implement

• But sometimes tests leverage code structure
§ You know the control-flow branches
§ You want to make sure each branch is correct
§ So you explicitly have a test for each branch

• This is called code coverage

9/12/23 Conditionals & Program Flow 29



Which Way is Correct?

• Code coverage requires knowing code
§ So it must be done after implementation
§ But best practice is to write tests first

• Do them BOTH
§ Write tests from the specification
§ Implement the function while testing
§ Go back and add tests for full coverage
§ Ideally this does not require adding tests

9/12/23 Conditionals & Program Flow 30



Recall: Debugging

• Unit tests cannot find the source of an error
• Idea: “Visualize” the program with print statements

def last_name_first(n):
   """Returns: copy of n in form 'last-name, first-name' """
    end_first = n.find(' ')
    print(end_first)
    first = n[:end_first]
    print('first is '+str(first))
    last  = n[end_first+1:]
    print('last is '+str(last))
    return last+', '+first

9/12/23 Conditionals & Program Flow 31

Print variable after 
each assignment

Called watches



Now Have a Different Challege

# Put max of x, y in z
    print('before if')
     if x > y:
        print('if x>y')
       z  = x
     else:
         print('else x<=y')
        z  = y
    print('after if')

• What was executed?
§ The if -statement?
§ Or the else-statement?

• More print statements
§ Trace program flow
§ Verify flow is correct

9/12/23 Conditionals & Program Flow 32

Called traces



Watches vs. Traces

Watch

• Visualization tool
§ Often print/log statement
§ May have IDE support

• Looks at variable value
§ Anywhere it can change 
§ Often after assignment

Trace

• Visualization tool
§ Often print/log statement
§ May have IDE support

• Looks at program flow
§ Anywhere it can change
§ Before/after control

9/12/23 Conditionals & Program Flow 33



Traces and Functions

print('before if')
     if x > y:
         print('if x>y')
        z  = y
        print(z)
     else:
         print('else x<=y')
        z  = y
        print(z)
    print('after if')
9/12/23 Conditionals & Program Flow 34

Watches Traces

Example: flow.py



Conditionals: If-Elif-Else-Statements

Format
if expression :
 statement
 …
elif expression :

  statement
 …

    …
 else:
  statement

 …

Example

   # Put max of x, y, z in w
     if x > y and x > z:
         w = x
     elif y > z:
         w = y
     else:
         w = z

9/12/23 Conditionals & Program Flow 35



Conditionals: If-Elif-Else-Statements

Format
if expression :
 statement
 …
elif expression :

  statement
 …

    …
 else:
  statement

 …

Notes on Use

9/12/23 Conditionals & Program Flow 36

• No limit on number of elif
§ Can have as many as want
§ Must be between if, else

• The else is always optional
§ if-elif by itself is fine

• Booleans checked in order
§ Once it finds first True, 

skips over all others
§ else means all are false



Python Tutor Example

9/12/23 Conditionals & Program Flow 37



Conditional Expressions

Format

e1 if bexp else e2
• e1 and e2 are any expression

• bexp is a boolean expression

• This is an expression!
§ Evaluates to e1 if bexp True

§ Evaluates to e2 if bexp False

Example

# Put max of x, y in z
z = x if x > y else y 

9/12/23 Conditionals & Program Flow 38

expression, 
not statement


