Types of Testing

Finding the Error

Black Box Testing

‘White Box Testing

 Function is “opaque”
= Test looks at what it does

= Fruitful: what it returns

59

* Function is “transparent

= Tests/debugging takes
place inside of function

= Procedure: what changes = Focuses on where error is

+ Example: Unit tests * Example: Use of print
* Problems:
= Much harder to do

= Must remove when done

* Problems:
= Are the tests everything?

= What caused the error?

 Unit tests cannot find the source of an error

* Idea: “Visualize” the program with print statements
def last_name_first(n):
"""Returns: copy of n in form 'last-name, first-name' """

end_first = n.find(')
print(end_first) Prmth varlfible after
first = n[:end_first] ST S G

print('first is '+stre(first))

Optional: Annotate
value to make it
easier to identify

last = n[end_first+1:]
print('last is '+str(last))

return last+', '+first

How to Use the Results

* Goal of white box testing is error location
= Want to identify the exact line with the error
= Then you look real hard at line to find error
= What you are doing in lab this week
* But similar approach to black box testing
= At each line you have expected print result
= Compare it to the received print result
= Line before first mistake is /ikely the error

Structure vs. Flow

Program Structure Program Flow

* Order code is presented * Order code is executed
= Order statements are listed = Not the same as structure
= Inside/outside of function = Some statements duplicated

= Will see other ways... = Some statements skipped

¢ Defines possibilities over ¢ Defines what happens in a
multiple executions single execution

Have already seen this

difference with functions

Conditionals: If-Statements

Format Example
if expression : # Put x in z if it is positive
Statement ifx>0:
| z=x
statement
Execution:

If expression is True, execute all statements indented underneath

Conditionals: If-Else-Statements

Format Example
if expression : #Put max of x,yin z
Statement ifx>y:
| z=x
else:
else:
statement
| ey
Execution:

If expression is True, execute all statements indented under if.

If expression is False, execute all statements indented under else.

Conditionals: “Control Flow” Statements

. Branch Point:
if b: Evaluate & Choose
| sI# statement
83
Statement Execute

if b:

- sl Flow

else: Program only

‘ 2 takes one path
5 each execution

S

Program Flow and Call Frames

def max(x,y):

o =

w

"""Returns: max of x, y""
simple implementation
ifx>y:

| returnx

return y

Frame sequence

depends on flow

max(0,3):

| max |]
x E RETURN
y

Skips line 2

Testing and Code Coverage

* Typically, tests are written from specification
= This is because they should be written first
= You run these tests while you implement
+ But sometimes tests leverage code structure
* You know the control-flow branches
= You want to make sure each branch is correct

= So you explicitly have a test for each branch

¢ This is called code coverage

Watches vs. Traces

Watch

Trace

 Visualization tool

= Often print/log statement
= May have IDE support

* Looks at variable value

= Anywhere it can change
= Often after assignment

 Visualization tool

= Often print/log statement
= May have IDE support

* Looks at program flow
= Anywhere it can change
= Before/after control

10

Traces and Functions

print('before if'")
ifx>y:
print('if x>y") I

zZ =y
print(z)<—[Watches } [Traces }
else:

print(‘else x<=y")
z =y
print(z) «— |

print(‘after if")

Example: flow.py

Conditionals: If-Elif-Else-Statements

Format

Notes on Use

if expression :
‘ statement

elif expression :
‘ statement

else:

statement

* No limit on number of elif
= Can have as many as want
= Must be between if, else

* The else is always optional
= if-elif by itself is fine

* Booleans checked in order

= Once it finds first True,
skips over all others
= else means all are false

11

12

