Lecture 5

Strings

Announcements For This Lecture

Assignment 1 Getting Help
* Will post it on Thursday * Can work 1n pairs
= Need Thurs. lecture = Will set up
* And associated lab = Submit one for both
* Due Sun Sep. 17th * Lots of consultant hours
= Revise until correct * Come early! Beat the rush
* Final version Sep 24th = Also use TA office hours

* Do not put off until end! * One-on-Ones next week

9/5/23 Strings 2

One-on-One Sessions

» Starting Monday: 1/2-hour one-on-one sessions

* Bring computer to work with instructor, TA or consultant
* Hands on, dedicated help with Labs 5 & 6 (and related)

= To prepare for assignment, not for help on assignment
* Limited availability: we cannot get to everyone

= Students with experience or confidence should hold back

 Sign up online in CMS: first come, first served

* Choose assignment One-on-One
* Pick a time that works for you; will add slots as possible
= Can sign up starting at Spm THURSDAY

9/5/23 Strings

One-on-One Sessions

» Starting Monday: 1/2-hour one-on-one sessions

* Bring computer to work with instructor, TA or consultant
* Hands on, dedicated help with Labs 5 & 6 (and related)

I personally have only 96 slots!

[Leave those for students in need.

* Choose assignment One-on-One
* Pick a time that works for you; will add slots as possible
= Can sign up starting at Spm THURSDAY

9/5/23 Strings

Even More Announcements

The Al Quiz Watching Videos?

e Must finish before Al * Today

= Will reject assignment * Lesson 6: Strings
= Means a 0 by Sep 24th e Next Time
* Current statistics = Lesson 7: Specifications
= 116 have not passed * Lesson 8: Testing
= 42 have not taken = Notice that it 1s a lot
 E-mails sent tomorrow * Important for Al

9/5/23 Strings

Purpose of Today’s Lecture

* Return to the string (str) type
= Saw it the first day of class

= Learn all of the things we can do with it

* See more examples of functions

= Particularly functions with strings

 Learn the difference between...

= Procedures and fruitful functions

= print and return statements

9/5/23 Strings

String: Text as a Value

 String are quoted characters

* How to write quotes 1n quotes?

= 'abc d' (Python prefers)
= "abc d" (most languages)

= Delineate with “other quote”
= Example: "Don't" or '6" tall
* What 1f need both " and ' ?

* Solution: escape characters

9/5/23

* Format: \ + letter
= Special or invisible chars

Strings

\'" single quote

\" double quote

\n new line
\t tab
\\ backslash

>>> x ="' said: "Don\'t"
>>> print(x)
I said: "Don't"

String are Indexed

e Access characters with []

= s[0]
4]
5]
0:2] 1s 'ab’ (excludes c¢)
R:
ed “string slicing”

S
S
S
“ S

o (Call

9/5/23

1s 'a’
1s 'd’

CausScs an error

Jis'c d'

e g ="Hello all

01 2 3 4 5

Hilell|l]o

L | O

o ~d

* What 1s s[3:6]?

Strings

A:'lo a'

B: 'lo'

C:'lo"’

D:'o'

E: I do not know

String are Indexed

e Access characters with []

= s[0]
4]
5]
0:2] 1s 'ab’ (excludes c¢)
R:
ed “string slicing”

S
S
S
“ S

o (Call

9/5/23

1s 'a’
1s 'd’

CausScs an error

Jis'c d'

e g ="Hello all

01 2 3 4 5

Hliell

1

Q| o
o ~d

O

* What 1s s[3:6]?

Strings

A:'lo a
B: '10'
C:'lo'
D:'o'

CORRECT

E: I do not know

String are Indexed

e s='gbcd e g ="Hello all
O 1 2 3 4 O 1 2 3 4 5 6 7
alblc d Hle|l|l]o all

e Access characters with [] * What 1s s[:4]?
= g[0] 1s 'a’

= g[4] is 'd’ A:'oall
- B: 'Hello'
= g[B5] causes an error
_ , C: 'Hell
= g[0:2] 1s 'ab’ (excludes c) D Error!
S

R:]1s 'c d' E: I do not know

 (Called “string slicing”

9/5/23 Strings

String are Indexed

e s='abcd e s ="Hello all'
01 2 3 4 01 2 3 45 6 7
albl|c d Hilell|l]o all
e Access characters with [] * What 1s s[:4]?
= g[0] 1s 'a'
= g[4] is 'd’ A:'oall
= g[B5] causes an error B: 'Hello
' C: 'Hell CORRECT

0:2] 1s 'ab' (excludes c¢) D: Error!

S
S
S
s[e:]1s'c d E: I do not know

 (Called “string slicing”

9/5/23 Strings

Other Things We Can Do With Strings

* Operation in: 8; in 8, * Function len: len(s)
" Tests 1f 8; “a part of” 8, " Value is # of chars in 8
= Say 8; a substring of 8, = Evaluates to an int

= Evaluates to a bool

* Examples: * Examples:
= g ='abracadabra' = g ='abracadabra’
= '3'in s == True = len(s) ==11
= 'cad' in s == True = len(s[1:5]) ==
= 'foo' in s == False = g[l:len(s)-1] == 'bracadabr'

9/5/23 Strings 12

Defining a String Function

 Start w/ string variable

* Holds string to work on
= Make it the parameter

* Body 1s all assignments

= Make variables as needed
= But last line 1s a return

* Try to work 1n reverse

9/5/23

= Start with the return

= Figure ops you need

= Make a variable if unsure
= Assign on previous line

def middle(text):

Strings

""Returns: middle 3 of text
Param text: a string"""

Get length of text

Start of middle third
End of middle third
Get the text

Return the result
return result

13

Defining a String Function

 Start w/ string variable

* Holds string to work on
= Make it the parameter

* Body 1s all assignments

= Make variables as needed
= But last line 1s a return

* Try to work 1n reverse

9/5/23

= Start with the return

= Figure ops you need

= Make a variable if unsure
= Assign on previous line

def middle(text):

Strings

""Returns: middle 3 of text
Param text: a string"""

Get length of text

Start of middle third
End of middle third
Get the text

result = text[start:end]

Return the result
return result

14

Defining a String Function

 Start w/ string variable

* Holds string to work on
= Make it the parameter

* Body 1s all assignments

= Make variables as needed
= But last line 1s a return

* Try to work 1n reverse

9/5/23

= Start with the return

= Figure ops you need

= Make a variable if unsure
= Assign on previous line

def middle(text):

Strings

""Returns: middle 3 of text
Param text: a string"""

Get length of text
Start of middle third

End of middle third
end = &*size//3

Get the text
result = text[start:end]

Return the result
return result

15

Defining a String Function

 Start w/ string variable

* Holds string to work on
= Make it the parameter

* Body 1s all assignments

= Make variables as needed
= But last line 1s a return

* Try to work 1n reverse

9/5/23

= Start with the return

= Figure ops you need

= Make a variable if unsure
= Assign on previous line

def middle(text):

Strings

""Returns: middle 3 of text
Param text: a string"""

Get length of text

Start of middle third
start = size//3

End of middle third
end = &*size//3

Get the text
result = text[start:end]

Return the result
return result

16

Defining a String Function

 Start w/ string variable

* Holds string to work on
= Make it the parameter

* Body 1s all assignments

= Make variables as needed
= But last line 1s a return

* Try to work 1n reverse

9/5/23

= Start with the return

= Figure ops you need

= Make a variable if unsure
= Assign on previous line

def middle(text):

Strings

""Returns: middle 3 of text
Param text: a string"""

Get length of text
size = len(text)

Start of middle third
start = size//3

End of middle third
end = 2*gize//3

Get the text
result = text[start:end]

Return the result
return result

17

Defining a String Function

>>> middle('abc')

b

>>> middle(‘aabbee’)
bb'

>>> middle(‘aaabbbeee')
'bbb'

9/5/23

def middle(text):

"""Returns: middle 3% of text
Param text: a string"""

Get length of text
size = len(text)

Start of middle third
start = size//3

End of middle third
end = &*size//3

Get the text

result = text[start:end]

Return the result
return result

Not All Functions Need a Return

def gpeet,(n):/[Note the difference }

"""Prints a greeting to the name n

Parameter n: name to greet
Precondition: n is a string""

|

print('"Hello '+n+'l") <[Displays these
) strings on the screen
print('How are you?') -
Y4
No assignments or return
The call frame 1s EMPTY

9/5/23 Strings

19

Procedures vs. Fruitful Functions

Procedures Fruitful Functions

* Functions that do something < Functions that give a value

« (all them as a statement (all them 1n an expression
« Example: greet('Walker') « Example: X = round(2.56,1)
Historical Aside

» Historically “function” = “fruitful function™

 But now we use “function” to refer to both

9/5/23

Strings 20

Print vs. Return

Print Return

* Displays a value on screen * Defines a function’s value

= Used primarily for testing = Important for calculations

= Not useful for calculations = But does not display anything
def print_plus(n): def return_plus(n):
| print(n+1) return (n+1)
>>> x = print_plus(R) >>> x = return_plus(?)
3 >>>

>>>

9/5/23 Strings

Print vs. Return

Print Return

* Displays a value on screen * Defines a function’s value

= Used primarily for testing = Important for calculations

= Not useful for calculations = But does not display anything
def print_plus(n): def return_plus(n):
| print(n+1) return (n+1)
>>> x = print_plus(R) >>> x = return_plus(?)
3 >>>

X X| &

>>>

[Nothing here!

9/5/23 Strings 22

Method Calls

* Methods calls are unique (right now) to strings

= Like a function call with a “string in front”

e Method calls have the form

string.name(x,y,...)

<\

argument method arguments
name

* The string in front 1s an additional argument
= Just one that is not inside of the parentheses

* Why? Will answer this later in course.

9/5/23 Strings

23

Example: upper()

* upper(): Return an upper case copy
>>> g = 'Hello World’

>>> g.upper()

'HELLO WORLD'

>>> g[1:Bl.upper() # Str before need not be a variable
'ELLO’

>>> 'gbe’.upper() # Str before could be a literal
'ABC’

 Notice that on/y argument 1s string 1n front

9/5/23 Strings

24

Examples of String Methods

* g,.index(s,)

= Returns position of the
first instance of S, 1n §;

* 8;.count(sy)

= Returns number of times
S, appears inside of s;

e g.strip()

9/5/23

= Returns copy of s with no
white-space at ends

Strings

>>> g = 'abracadabra’
>>> g.index('a’)

0

>>> g.index('rac')
P

>>> g.count('a’)

3)

>>> g.count('x')
0

>>>"' g b .strip()
9 B!

25

Examples of String Methods

* 3;.index(s,) >>> g = 'ghracadabra’
= Returns position of the >>> g.index('a’)
first instance of 8, in §; 0

* g;.count(s,
= Return:
Sy appe:

>>> g.count('x")

* 8.strip() 0
= Returns copy of s with no >>> ' gb ".strip()
white-space at ends PN .

9/5/23 Strings

26

Working on Assignment 1

* You will be writing a lot of string functions

* You have three main tools at your disposal
" Searching: The index method

= Cutting: The slice operation [start:end]
" Gluing: The + operator

» Can combine these 1n different ways
= Cutting to pull out parts of a string

" Gluing to put back together in new string

9/5/23 Strings 27

String Extraction Example

def firstparens(text):

"""Returns: substring in)
Uses the first set of parens
Param text: a string with Q"""

SEARCH for open parens
start = text.index('(")

CUT Dbefore paren
tail = text[start+1:]

SEARCH for close parens
end = tail.index(")")

CUT and return the result
return tail[:end]

9/5/23

>>> g = 'Prof (Walker) White'
>>> firstparens(s)

‘Walker'

>>>f ="'(A) B (C) D'

>>> firstparens(t)

A

Strings

28

String Extraction Puzzle

DN B W N =

def second(text): >>> second('ca.t,u dog, mouse, lion')

""Returns: second elt in text 'dog

separated by commas, spaces.
Ex: second('A, B, C’) rets 'B'
Param text: a list of words™""

'pear

start = text.index(',")) # SEARCH
tail = text[start+1:] # CUT

end = tail.index(',)) # SEARCH
result = tail[:end] # CUT
return result

9/5/23 Strings

The text is a sequence of words >>> second('apple, pear, banana')

29

String Extraction Puzzle

DN B W N =

def second(text): >>> second('ca,t,u dog, mouse, lion')
"""Returns: second elt in text 'dog’
The text is a sequence of words >>> second(‘apple, pear, banana')
separated by commas, spaces. pear’ -
Ex: second('A, B, C’) rets 'B'
Param text: a list of words""" ,
[Where 1S the error?}
start = text.index(',")) # SEARCH ~Line |
o . : Line
tail = text[start+1:] # CUT B: Line 2
end = tail.index(,)) # SEARCH C: Line 3
result = tail[:end] # CUT D: Line 4
return result E: There 1s no error

9/5/23 Strings 30

String Extraction Puzzle

DN B W N =

def second(text): >>> second('ca,t,u dog, mouse, lion')
"""Returns: second elt in text 'dog’
The text is a sequence of words >>> gecond(‘apple, pear, banana’)
separated by commas, spaces. pear =
Ex: second('A, B, C’) rets 'B'
Param text: a list of words™""
start = text.index(',")) # SEARCH
tail = text[start+1:] # CUT tail = text[start+2:]
end = tail.index(',)) # SEARCH OR
result = tail[:end] # CUT result = tail[:end].strip()
return result

9/5/23 Strings 31

