Announcements For This Lecture

Assignment 1

Getting Help

* Will post it on Thursday
= Need Thurs. lecture
= And associated lab

* Due Sun Sep. 17th
= Revise until correct

= Final version Sep 24th
* Do not put off until end!

» Can work in pairs
= Will set up
= Submit one for both

* Lots of consultant hours
= Come early! Beat the rush

= Also use TA office hours

¢ One-on-Ones next week

String: Text as a Value

« String are quoted characters
= 'abc d' (Python prefers)
= "abc d" (most languages)
* How to write quotes in quotes?
= Delineate with “other quote”
= Example: "Don't" or '6" tall'
= What if need both " and ' ?
* Solution: escape characters
= Format: \ + letter

[ Char | Meaning |
\"  single quote
\" " double quote
\n new line
\t  tab
\\'  backslash

>>>x =T said: "Don\'t"
>>> print(x)
I said: "Don't"

9/9/21 Strings 1

= Special or invisible chars

String are Indexed

e s="abcd e 5 ="Hello all'
01234 012345678

[a]pe] [d] [Ele[2]1]o] Jal1]1]

* Access characters with []

* What is s[3:6]?

= g[0]is 'a'
* sl4]is 'd A:loal
v 5] causes B:'lo'
s[B] causes an error C: o
= 5[0:] is 'ab' (excludes ¢) D:'o'
= glR]is'cd E: I do not know

» Called “string slicing”

Other Things We Can Do With Strings

* Operation in: s; in sp * Function len: len(s)

= Tests if §; “is inside” s, = Value is # of chars in s
= We say 8; a substring of S, = Evaluates to an int
= Evaluates to a bool
* Examples: * Examples:
= g ='abracadabra’
= len(s) == 11
= len(s[1:5]) ==

= g[1:len(s)-1] == 'bracadabr'

= g ='abracadabra'

'a’ in s == True

‘cad' in s == True

'foo' in s == False

9/9/21 Strings

4

Defining a String Function

>>> middle(‘abe') def middle(text):
b ""Returns: middle 3¢ of text
Param text: a string™"
>>> middle(‘aabbec')
bb' # Get length of text
size = len(text)
>>> middle(‘aaabbbeee’) # Start of middle third
bbb’ start = size//3
# End of middle third
end = 2*size//3
# Get the text
result = text[start:end]
# Return the result

return result

Procedures vs. Fruitful Functions

Procedures Fruitful Functions

» Functions that do something ¢ Functions that give a value
+ Call them as a statement
» Example: greet('Walker")

 Call them in an expression
« Example: x = round(2.56,1)

Historical Aside
* Historically “function” = “fruitful function”
* But now we use “function” to refer to both




Print vs. Return

Print

Return

 Displays a value on screen
= Used primarily for testing
= Not useful for calculations

def print_plus(n):

| print(n+1)

>>> x = print_plus(R)
3
>>>

X

Nothing here!

* Defines a function’s value

= Important for calculations
= But does not display anything

def return_plus(n):
| return (n+1)
>>> x = peturn_plus(R)

>>>
x[ 3]

Method Calls

* Methods calls are unique (right now) to strings
= Like a function call with a “string in front”

e Method calls have the form

string.name(x.y,...)

argument

method
name

arguments

* The string in front is an additional argument
= Just one that is not inside of the parentheses

= Why? Will answer this later in course.

8
Examples of String Methods
o g1.index(ss) >>> g = 'abracadabra’
= Returns position of the >>> g.index(‘a")
first instance of Sg in 8; 0
>>> g.index('rac")
e g1.count(sg) 9
= Returns number of times >>> g.count('a’)
s, appears inside of s; 5
>>> g.count('x’'
e s.stripQ) 0 (0
= Returns copy of s with no S>> ! abpi
white-space at ends o ab.strip)
ab
10
String Extraction Puzzle
def second(text): >>> second(‘cat,u dog, mouse, lion")
""Returns: second elt in text 'dog'
The text is a sequence of words  >>> gecond(apple, pear, banana!)
separated by commas, spaces. 'pear’ -
Ex: second(’A, B, C’) rets 'B'
Param text: a list of words™"
1 start = text.index(',) # SEARCH
2| tail = text[start+1] # CUT
3| end=tailindex(,) # SEARCH
4 result=taillend]  # CUT
5

7
Example: upper()
e upper(): Return an upper case copy
>>> g = "Hello World’
>>> g.upper()
'HELLO WORLD'
>>> g[1:8].upper() # Str before need not be a variable
'ELLO'
>>>'abc'.upper()  # Str before could be a literal
IABC?
* Notice that only argument is string in front
9
String Extraction Example
def firstparens(text): >>> g = 'Prof (Walker) White'

""Returns: substring in >>> firstparens(s)

Uses the first set of parens "Walker'

Param text: a string with O™ oo t="(A)B(Q) D'

# SEARCH for open parens >>> firstparens(t)

start = text.index(‘('g) N

# CUT before paren

tail = text[start+1:]

# SEARCH for close parens

end = tail.index(")")

# CUT and return the result

return tail[:end]

11

return result

12




