Last Name: First Name: Cornell NetID, all caps:

CS 1110 Regular Prelim 1 March 2021

This 90-minute closed-book, closed-notes exam has 7 questions worth a total of roughly 88 points
(some point-total adjustment may occur during grading).
You may separate the pages while working on the exam; we have a stapler available.

It is a violation of the Academic Integrity Code to look at any exam other than
your own, to look at any other reference material, or to otherwise give or receive
unauthorized help.

We also ask that you not discuss this exam with students who are scheduled to take
a later makeup.

Academic Integrity is expected of all students of Cornell University at all times, whether in the
presence or absence of members of the faculty. Understanding this, I declare I shall not give, use
or receive unauthorized aid in this examination.

Signature: Date




Last Name: First Name: Cornell NetID:

1. [6 points] Lists. For the following function, student__netids should be a list of 1000 unique
strings corresponding to student netids, and student__names should be a list of 1000 strings.

The two lists “line up”: each item in student_names is the name for the student with netid in
the corresponding location in student_netids

Using this information, complete the function below.

def get_name_from_netid(student_netids, student_names, spec_netid):
"""Returns the name of the student who has netid spec_netid.

Preconditions:
student_netids and student_names are as described in the question.
spec_netid: string that appears exactly once in student_netids."""
# STUDENTS: loops are NOT ALLOWED.

2. [9 points] Strings. Implement the following function.

def figlatin(s, k):
"""Tf s has length at least k+1, returns the string formed by adding in the
string 'fig' just after the character at index k in s.

Otherwise, returns the string formed by adding string 'fig' to the end of s.
Examples:

figlatin("012345", 3) --> "0123figdb" figlatin("012345", 5) --> "012345fig"
figlatin("012345", 0) --> "0figl2345" figlatin("012345", 55)--> "012345fig"

Precondition: k>=0 is an int. “s° is a non-empty string."""
# STUDENTS: WARNING: strings do NOT have an insert method the way lists do.
# Do NOT use loops; instead use string operations and methods.

Page 2



Last Name: First Name: Cornell NetID:

3. [16 points] We define the half-shift of a list of integers ol to be a new list hsl, where the i‘!
item of hsl is the float that is % of the sum of the entries in ol up to but not including the i*®
entry of ol. (The sum of zero numbers is 0.)

For example, suppose ol were [4, 5, 9, 2].

Then, hsl[0] would be the float that is one-half of the sum of zero numbers, or 0.0.

hsl[1] would be one-half of 4, or 2.0

hsl[2] would be one-half of 445, or 4.5.

And hsl[3] would be one-half of 44549, or 9.0.

In other words, hsl would be [0.0, 2.0, 4.5, 9.0], and one would change the four elements of ol
to these values.

Implement the following function.

def half shift(ol):
"""Transforms the entries in “0l~ so that "0l becomes the half-shift of
what it used to be. (Does not return anything.)

Preconditions: ol is a nonempty list of positive integers."""

# STUDENTS: You must use for-loops effectively.

# You are allowed to create new lists in your solution.
# You may *not* use the sum() function.

Page 3



10

11

12

13

Last Name: First Name: Cornell NetID:

4. [26 points| The Dairy Bar has coupons for free ice cream! An ice cream coupon is an object
whose attributes are flavor and size. Assume that a call of the form Coupon(f, s) creates
a new Coupon with attribute flavor set to f and attribute size set to s. And assume that
class Coupon is accessible from some previous import.

Run the entire 19 lines of code below and draw the appropriate call frames, the heap space and
global space, using the notation from class and Assignment 2.

def upgrade(coupon, flavor, size): 14 def changeFlavor (coupon, flavor):
if size == 'small': 15 if flavor == 'vanilla':
coupon.size = update_size(flavor) 16 coupon.flavor = 'mint chocolate'

changeFlavor (coupon, flavor)
favorite = coupon.flavor 17 favorite = 'pistachio'
18 a = Coupon('vanilla', 'small' )
19 upgrade(a, a.flavor, a.size)
def update_size(flavor):

if flavor in ['vanilla', 'chocolate']:
newSize = 'medium'

if flavor == 'strawberry':
newSize = ‘'large'

else:
newSize = 'grande'

return newSize

Page 4



Last Name: First Name: Cornell NetID:

5. [6 points] Test cases.

Consider the following function specification.

def tradeElems(listl, list2, repVal):

listl and list2 are same-length lists of integers. repVal is an integer.

At every index where 'repVal' appears in either list, swap the corresponding
elements of listl and list2. e

We'’ve given an example of one set of sample inputs and expected output below.

Provide two more conceptually distinct test cases, using the same format. Include a short
statement (1-2 sentences) explaining what situation each of your test cases represents.

First Test Case

list1: 1, 2,3, 1]
list2: 5,3, 1, 2]
repVal: 1
Expected list1: 5, 2, 1, 2]
Expected list2: [1, 3, 3, 1]

Page 5



Last Name: First Name: Cornell NetID:

6. Object access.

Assume objects of new class Academy have four attributes: string name, and three lists of

ints (standing for student tag numbers, like in Assignment 3): accepted, rejected, and
waitlisted.

(a) [7 points] Suppose a is an Academy object whose three attribute lists are all empty.

And, suppose that slist is a list of 100 unique ints.

Write code that performs each of the following actions. (Don’t write a function header or
assume one is given.)

Add int 12 to a’s accepted list.

Set a’s waitlisted to the list [4, 7, 9].

Set a’s rejected list to be a list of the items in slist starting from the item at index 4
and up to and including the item at index 58.

(b) [14 points] Implement the following function.
(You don’t need any more info about the pair object beyond what’s given.)
def print_j(pair, j):

""" pair is an object with two attributes, al and a2, which are
both Academy objects (not None).

If both Academy objects in pair have at least j+1 accepted students,
print the int at index j in the first Academy's accepted list,
print the int at index j in the second Academy's accepted list,
and return True.

Otherwise, return False. (And don't print anything.)

Preconditions: pair is as described above; j >= 0 is an int. """

Page 6



Last Name: First Name: Cornell NetID:

(c) [3 points] Implement the following function.

def print_k(thelist, k):
"""thelist is a list of at least k+1 Academy objects, each of which
has at least one accepted student.

Prints the first int in the accepted list of the Academy
at index k in thelist."""

7. [1 point] Fill in your last name, first name, and Cornell NetID at the top of each
page.

Also, remember that you should not discuss this exam with students who are
scheduled to take a later makeup.

Page 7



