


1. Start Your Engines

(a) [2 points] Python is a dynamically typed language. This means that a variable can hold

values of any type and a variable can hold di↵erent types at di↵erent times. Write 2 lines

of Python code that illustrate this.

x = 1

x = "hi"

(b) [2 points] A type is defined as “a set of values and operations on these values”. The

meaning of an operator can change depending on the type. Give an example of an operator

that has two distinct meanings when used in the context of two di↵erent types. What are

these two meanings?

+ means addition for integers and concatenation for strings

(c) [2 points] If Python has just executed line 6 and is about to execute line 7,

what does the call stack look like?

1 def f3():

2 print("f3")

3

4 def f2():

5 print("f2")

6 f3()

7 f3()

8 f3()

9

10 def f1():

11 print("f1")

12 f2()

13

14 f1() Correct Answer: D

(d) [2 points] After the following lines of code have been executed:

x = [0, 1, 2, 3, 4]

z = x

y = x[1:4]

z[y[1]] = y[2]

What does x[2] evaluate to? Correct Answer: 3

Page 2



2. [12 points] The Sticking Point

Consider the Point3 class as it was used in lecture, with 3 attributes: x, y, and z.

1 import shapes

2

3 def stick(p1, p2):

4 p2.y = p1.x

5 y = x

6 z = y + x

7 return z

8

9 x = 1

10 y = 2

11

12 p1 = shapes.Point3(3,4,5)

13 p2 = shapes.Point3(6,7,8)

14 p3 = p1

15 p1.z = 9

16

17 x = stick(p2, p1)

Lines 1-17 execute without any error. After they are executed, what would the following python

expressions evaluate to?

(a) x

Correct Answer: 2

(b) y

Correct Answer: 2

(c) z

Correct Answer: Error

(d) p1.y

Correct Answer: 6

(e) p2.y

Correct Answer: 7

(f) p3.y

Correct Answer: 6 In order to get points for this question, your answer needed to match

your answer for (d). This way if you made a mistake for part (d) you still received points

for recognizing that p3 and p1 refer to the same folder.

Page 3



3. Above your pay grade. iClicker software creates a list of iClicker scores for each student.

Each score is the iClicker participation points for one lecture. If a student is absent, the software

does not enter a zero; the student receives no score for that day, making the length of the scores

list shorter than the total number of lectures. To calculate each student’s average iClicker score,

Professor Bracy wants a zero added to the scores list for each missed lecture. She implements

a function make complete scores(scores, num lectures) which takes scores, a (possibly

empty) list of floats with values > 0.0 but <= 2.0 that represent a student’s iClicker grades,

and num lectures, a non-negative integer that represents the current number of lectures in

the semester. num lectures >= the length of scores. (Since each lecture is worth at most

2 points, the ordering of the scores list doesn’t matter.) It returns a list of scores of length

num lectures, with zeroes explicitly present at the end of the list for missed lectures.

(a) [9 points] Write 3 conceptually distinct test cases for make complete scores(scores,

num lectures). Make sure your input values are ordered scores, num lectures.

There were many correct answers. Here are some we came up with.

Test case #1

Input: [], 5

Output: [0.0, 0.0, 0.0, 0.0, 0.0]

Rationale: student absent for the whole time

Test case #2

Input: [2.0, 1.0, 2.0], 4

Output: [2.0, 1.0, 2.0, 0.0]

Rationale: student with some iclicker points

Test case #3

Input: [2.0, 2.0, 1.5], 3

Output: [2.0, 2.0, 1.5]

Rationale: student with full attendance

Page 4



(b) [6 points] The famous clock maker, Timex, would like to donate an alarm clock to anyone

who seems to be struggling to make it to class. To identify students who would benefit from

an alarm clock, the head TA for CS 1110 writes a function needs alarm(complete scores,

num lectures). For this function, complete scores will represent a student’s iClicker

scores fully constructed from make complete scores(). The second parameter num lectures

is identical to that used in make complete scores(). This function will return a bool;

True if the student has missed between 1/3 and 2/3 (exclusive) of the num lectures and

False otherwise. (If they skip 2/3 or more of the lectures, they probably just need more

sleep, not an alarm clock.)

Implement the function as described, ignoring the need for any preconditions for now.

def needs_alarm(complete_scores, num_lectures):

"""checks to see if the student could benefit from an alarm clock

Returns: True if the student has missed between 1/3 and 2/3 of all

lectures. (a missed lecture is indicated by a score of 0)

Otherwise, returns False"""

num_absent = complete_scores.count(0)

skip_rate = num_absent/num_lectures

if skip_rate > 1/3 and skip_rate < 2/3:

return True

return False

(c) [2 points] What is one precondition you should add to the specification of the function

above? In other words, what condition (if violated) would cause your implementation to

either behave incorrectly or raise an error?

len(complete scores) == num lectures

or else the skip rate will be incorrectly calculated

num lectures > 0

or else you’ll have a divide by zero error

Page 5



4. [15 points] Stack Attack! Aliens are invading the world. Captain Dan needs your help to

save humanity. Are you up for the challenge? A Captain has two attacks, each attack is its

own object with a name and damage attributes. The damage attribute determines how many

aliens it can kill. The code below has begun executing, resulting in the memory diagram on

the right. Execute the code to completion, beginning at the line indicated in the current

Call Frame. Update existing variables and objects and draw new variables and call frames as

needed. If you cross out a value or call frame, make sure it is still legible.

1 def fight(attack):

2 d = attack.damage

3 if d <= n_alien:

4 return d

5

6 def check_victory():

7 if n_alien <= 0:

8 return True

9 return False

10

11 def defend_universe(cap, n_alien):

12 kills = 0

13 if n_alien >= 2:

14 kills = fight(cap.attack1)

15 else:

16 kills = fight(cap.attack2)

17 n_alien = n_alien - kills

18 victory = check_victory()

19 if victory:

20 print("WE WON!")

21

22 n_alien = 3

23 a1 = Attack("tackle", 2)

24 a2 = Attack("bodyslam", 1)

25 c = Captain("Dan", a1, a2)

26 defend_universe(c, n_alien)

Page 6



5. What’s the frequent problem, Kenneth? Fix the errors in the code below. If you change

a function definition, please update the calls to that function, as necessary.

1 def fight(attack):

2 d = attack.damage

3 if d <= n_alien:

4 return d

5

6 def check_victory():

7 if n_alien <= 0:

8 return True

9 return False

10

11 def defend_universe(cap, n_alien):

12 kills = 0

13 if n_alien >= 2:

14 kills = fight(cap.attack1)

15 else:

16 kills = fight(cap.attack2)

17 n_alien = n_alien - kills

18 victory = check_victory()

19 if victory:

20 print("WE WON!")

21

22 n_alien = 3

23 a1 = Attack("tackle", 2)

24 a2 = Attack("bodyslam", 1)

25 c = Captain("Dan", a1, a2)

26 defend_universe(c, n_alien)

The code from the previous page is copied here

for your convenience.

(a) [4 points] The function fight sometimes triggers

a Python error. Explain why and fix the problem

by modifying the definition of fight.

The return statement is inside a conditional so

sometimes the function will return None. This

will cause a problem when the return value is

subtracted on line 17. The solution is to return

something unconditionally on line 5. What the

return value should be (d?,n alien?,0?) was not

specified nor graded. Fixing the error was all that

matters.

(b) [4 points] Even when Captain Dan kills all the

aliens, the code never prints “WE WON!”. Ex-

plain why and fix the problem by modifying the

definition of check victory.

check victory is reading the global variable

n alien which will never change from its origi-

nal value (in this case 3). The solution is to pass

n alien as an argument to the function. Code

will need to be changed on lines 6 and the call on

line 18.

1 def name(s):

2 print(s + " had a " + lamb())

3

4 def lamb():

5 print("little lamb")

6

7 def fleece():

8 print("Its fleece was white as snow")

9

10 def sing():

11 for i in range(2):

12 name(person)

13 if i == 0:

14 for j in range(2):

15 lamb()

16 fleece()

17

18 person = "Mary"

19 sing()

(c) [5 points] The code to the left should print

out the following lyrics:

Mary had a little lamb

little lamb

little lamb

Mary had a little lamb

Its fleece was white as snow

Instead, it throws an error. Explain why and

fix code that causes the problem. Note: the

for-loops (lines 11 and 14) are correct.

lamb() has no return value but its return

value (None) is being concatenated with a

string in line 2. The fixes are on line 5 (have

lamb() return a string instead of printing

it and 15 (print(lamb()) now that returns

rather than prints the string).

Page 7



6. [14 points] Hang in there! In the game Hangman, a player must guess a hidden word in

some number of guesses. At first, each letter is shown as a ’ ’. As the player correctly guesses

the letters in the word, they are revealed. Complete the function process guess(hidden,

shown, guess, guesses left) below so that it obeys the following specification in support

of the game hangman. (Don’t include a docstring.)

Preconditions:

- hidden is a string with length >= 1 with only lower-case letters and no repeating letters

- shown is a string identical to hidden, but 1 or more (not guessed) letters are replaced by ’ ’

- guess is a lower-case character

- guesses left is an int >= 1

process guess() should:

(1) print ”YOU WIN!” or ”YOU LOSE!” when applicable:

- If after this guess, the whole hidden word is now known/shown, the player has won.

- If the player didn’t just win the game and they only had 1 guesses left, then they lose.

(2) return the string shown, updated in response to guess:

- If guess is not a letter in hidden, return shown.

- If guess is a letter in hidden, return shown but with the ’ ’ corresponding to that letter

replaced with guess.

Examples:

hidden shown guess guesses_left what to print what to return

---------- ---------- ------ ---------- ------------- --------------

"world" "_____" 'o' 6 "_o___"

"world" "_o__d" 'e' 4 "_o__d"

"world" "_o__d" 'o' 3 "_o__d"

"world" "_o__d" 'r' 1 "YOU LOSE!" "_or_d"

"world" "w_rld" 'o' 1 "YOU WIN!" "world"

"world" "worl_" 'd' 4 "YOU WIN!" "world"

def process guess(hidden, shown, guess, guesses left):

i = hidden.find(guess)

new_shown = shown

if i != -1:

new_shown = shown[:i]+guess+shown[i+1:]

if (new_shown == hidden):

print("YOU WIN!")

elif guesses_left == 1:

print("YOU LOSE!")

return new_shown

There are many correct ways to do this. This is just one possible answer.

Page 8



7. [11 points] Home is where the Address folder specifies.

Consider an Address class with the attributes:

- num: an int representing the street number

- street: a str representing the street name

- city: a str representing the city name

- zip: a str representing the zip code

If a1 were a variable storing (the identifier of) an Address object, we could access the value of

its city attribute with the expression a1.city

Consider a second class, Contact, with the attributes:

- name: a name representing a person’s name

- home: the identifier of an Address representing where they live

- work: the identifier of an Address representing where they work

If c1 were a variable storing (the identifier of) a Contact object, we could access the value of its

home attribute (which stores (the identifier of) an Address object) with the expression c1.home

You may wish to draw object diagrams to make sure you understand the setup of the classes

and attributes involved.

Your task is to write two functions work together(c1, c2) and live together(c1, c2) with

the following specifications:

live together(c1,c2):

Preconditions: c1 and c2 are Contacts with distinct names and non-empty home addresses.

Returns True if c1 and c2’s home addresses are the same. Return False if they di↵er.

work together(c1,c2):

Preconditions: c1 and c2 are Contacts with distinct names and non-empty work addresses.

Returns True if c1 and c2’s work addresses are the same. Return False if they di↵er.

Two addresses are considered the same if all four attributes are equal.

Notice that these two functions have almost the same functionality. Instead of writing two

separate functions that have a large overlap in behavior (redundancy is bad! ), define a helper

function that these two functions can both call to accomplish their overlapping work.

Page 9



def address_equals(a1, a2):

"""

Inputs: a1 and a2 are both Address objects

Preconditions: a1 and a2 should have all 4 attributes of an Address

Functionality: compares all 4 class attributes of the inputs

to determine Address equality

Returns True if all 4 attributes are equal. Otherwise False.

"""

return (a1.num == a2.num) and (a1.street == a2.street) and \

(a1.city == a2.city) and (a1.zip == a2.zip)

def live_together (c1, c2):

""" c1 and c2 are Contacts with distinct names and non-empty home addresses

Return True if c1 and c2's home addresses are the same, False otherwise

"""

return address equals(c1.home, c2.home)

def work_together (c1, c2):

""" c1 and c2 are Contacts with distinct names and non-empty work addresses

Return True if c1 and c2's work addresses are the same, False otherwise

"""

return address equals(c1.work, c2.work)

Page 10


