
Final Exam Review

CS 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2022sp

http://www.cs.cornell.edu/courses/cs1110/2022sp

Announcements

• No post-lecture office hours today
• Study Guide is published
• Extra review sessions happening
• Final Exam is Sunday, May 15

3

• Check on Canvas
§ Final Exam Date & Time Assignments

• Pretty much everyone is taking it in Barton
• Only a few exceptions

§ Extended Time Exam Accommodations

• Closed Notes & Book, Reference Sheet
• Bring your Cornell ID

Where and When is your Exam?

4

https://canvas.cornell.edu/courses/36953/assignments/374536
https://canvas.cornell.edu/courses/36953/assignments/355617

An expression represents something
• Python evaluates it (turns it into a value)
• Similar to a calculator

Examples:
• 2.3

• (3 * 7 + 2) * 0.1

Expressions

5

HandoutSlide

Type: set of values & operations on them
Meaning of operations depends on type

Types

6

HandoutSlide

Type float:
• Values: real numbers
• Ops: +, -, *, /,//, **,%
Type int:
• Values: integers
• Ops: +, -, *, //, %, **
Type bool:
• Values: True, False
• Ops: not, and, or

Type str:
• Values: strings
• Double quotes: "abc"
• Single quotes: 'abc'

• Ops: + (concatenation)

An assignment statement:
• takes an expression
• evaluates it, and
• stores the value in a variable

Variable Assignment

7

variable

expression
equals sign
(just one!)

evaluates to 5

Example:
x = 4 + 1

In More Detail: Variables
• A variable

§ is a named memory location (box)
§ contains a value (in the box)

• Examples:

8

5x Variable x, with value 5 (of type int)

20.1area Variable area, w/ value 20.1 (of type float)

The type belongs
to the value, not
to the variable.

HandoutSlide

Expressions vs. Statements

Expression

• Represents something
§ Python evaluates it
§ End result is a value

• Examples:
§ 2.3
§ (3+5)/4
§ x == 5

Statement

• Does something
§ Python executes it
§ Need not result in a value

• Examples:
§ x = 2 + 1
§ x = 5

9

HandoutSlide

Look so similar
but they are not!

The command: x = 3.0*x+1.0

"Executing the command":
1. Evaluate right hand side 3.0*x+1.0
2. Store the value in the variable x's box

• Requires both evaluate AND store steps
• Critical mental model for learning Python

Executing an Assignment Statement

10

Function Calls

• Function calls have the form:
best_function_ever(x,y,…)

• Arguments
§ Separated by commas
§ Can be any expression

A function might have 0, 1, … or many arguments

function
name

argument(s)

11

Modules: Libraries vs. Scripts

Library

• Provides functions, variables
• import it into Python shell,

don't include ".py"
• Within Python shell you have

access to the functions and
variables of the imported
module

Script

• Behaves like an application
• At command line prompt,

Tell python to run the file
(use full filename, including
".py")

• After running the app you’re
back at the command line
(not in Python shell)

Files look the same.
Difference is how you use them.

12

C:\> python
>>> x = 7
>>> import math
>>> x = math.pi

Visualizing functions & variables

13

int()
float()
str()
type()
print()
…
x 7

Running Example:
1. Built-in functions
2. Define a new variable
3. Import a module
4. Use a module variable

sqrt()
log()
e
pi
…

math

3.14159

2.718281

What Python can access directly

3.14159

• Line number of the next statement in the
function body to execute
• Starts with 1st statement in function body

Draw parameters as
variables (named boxes)

Understanding How Functions Work
• We draw pictures to show what is in memory
• Call Frame: representation of function call

14

function name

local variables

parameters

instruction counter

Not just a pretty picture!
The information in this picture depicts exactlywhat is stored in

memory on your computer.

Function Access to Global Space

get_feet 3 4

15

5feet

1
2

Global Space# height3.py

INCHES_PER_FT = 12

def get_feet(ht_in_inches):

feet = ht_in_inches // INCHES_PER_FT

return feet

answer = get_feet(68)
print(answer)

12INCHES_PER_FT

3
4

5
6

print()
…

get_feet()

5answer

C:\> python height3.py
5

Call Stack

RETURN 5

Python has just executed line 6.

68 ht_in_inches

A Precondition Is a Contract

• If precondition is met, the function will work!
• If precondition is not met… no guarantees!

16

Representative Tests

• Cannot test all inputs
§ “Infinite” possibilities

• Limit ourselves to tests
that are representative
§ Each test is a significantly

different input
§ Every possible input is

similar to one chosen
• An art, not a science

§ If easy, never have bugs
§ Learn with much practice

17

Representative Tests for
vowel_count(w)

• Word with just one vowel
§ For each possible vowel!

• Word with multiple vowels
§ Of the same vowel
§ Of different vowels

• Word with only vowels
• Word with no vowels

Objects: Organizing Data in Folders

• An object is like a manila folder
• It contains other variables

§ Variables are called attributes
§ These values can change

• It has an ID that identifies it
§ Unique number assigned by Python

(just like a NetID for a Cornellian)
§ Cannot ever change
§ Has no meaning; only identifies

18

id1

x 2

y 3

z 5

Unique tab
identifier

Storage in Python

• Global Space
§ What you “start with”
§ Stores global variables
§ Lasts until you quit Python

• Heap Space
§ Where “folders” are stored
§ Have to access indirectly

• Call Stack (with Frames)
§ Parameters
§ Other variables local to function
§ Lasts until function returns

id2p
Global Space

id2
Heap Space

f1

f2

Ca
ll

Fr
am

es

Call Stack

Methods: a special kind of function

Methods are:
• Defined for specific classes
• Called using objects of that class

variable.method(arguments)
Example:
>>> import shapes

>>> u = shapes.Point3(4,2,3)

>>> u.greet()
“Hi! I am a 3-dimensional point located at (4,2,3)”

>>>

id3

x 4
y 2

z 3

id3u

Point3

20

Heap Space

Global Space

Built-in Types vs. Classes

Built-in types

• Built-into Python

• Refer to instances as values

• Instantiate with simple
assignment statement

• Can ignore the folders

Classes

• Provided by modules

• Refer to instances as objects

• Instantiate with assignment
statement with a constructor

• Must represent with folders

21

Classes are user-defined Types

Defining new classes =
adding new types to
Python

Example Classes
• Point3
• Rect
• Freq (A3), for word

frequencies
• Doll (class, lab)
• Song, Mix (A4)

22

id2

x 2

y 3

z 5

Point3

class name

1. Constructor creates a new object (folder)
of the class Course on the Heap
§ Folder is initially empty
§ Has id

2. Constructor calls __init__ (self, "CS 1110", 4)
§ self = identifier ("Fill this folder!")
§ Other args come from the constructor call
§ commands in __init__ populate folder
§ __init__ has no return value! ("I filled it!")

3. Constructor returns the id
4. LHS variable created, id is value in the box

Course

Heap Space

id1

Evaluating a Constructor Expression

23c1 = Course("CS 1110", 4)

name 'CS 1110'
n_credit 4

id1c1

Global Space

24

Classes Have Folders Too
Object Folders

• Separate for each instance
• Example: 2 Student objects

Class Folders
• Data common to all

instances

• Not just data!
• Everything common to

all instances goes here!

Student
id5s1

id6s2
20max_credit

netID 'abc123'
courses id2

Student

major "Music"

n_credit 15

id5

netID 'def456'
courses id3

Student

major "History"

n_credit 14

id6

Object Methods

• Attributes live in object folder
• Class Attributes live in class folder
• Methods live in class folder

25

Student

20max_credit

netID 'abc123'

courses id2

Student

major "Music"

n_credit 15

id5

__init__(self, netID,
courses, major)

Defining a Subclass
class Shape:

"""A shape located at x,y """
def __init__(self, x, y): …
def draw(self): …

class Circle(Shape):
"""An instance is a circle."""
def __init__(self, x, y, radius): …
def draw(self): …

class Rectangle(Shape):
"""An in stance is a rectangle. """
def __init__(self, x, y, ht, len): …
def draw(self): …

Shape

Rectangle Circle

__init__(self,x,y)
draw(self)

Shape

__init__(self,x,y, ht, len)
draw(self)

Rectangle(Shape)

__init__(self,x,y, radius)
draw(self)

Circle(Shape)

Superclass
Parent class
Base class

Subclass
Child class

Derived class

26

__init__: write new one, access parent’s
class Shape:
"""A shape @ location x,y """
def __init__(self, x, y):

self.x = x
self.y = y

class Circle(Shape):
"""Instance is Circle @ x,y w/size radius"""
def __init__(self, x, y, radius):

super().__init__(x,y)
self.radius = radius

• Want to use the original
version of the method?
§ New method =

original+more
§ Don't repeat code from

the original

• Call old method explicitly

Understanding Method Overriding

__init__(self)
__str__(self)
__eq__(self)

object

__init__(self,x,y)
__str__(self)
__eq__(self)
draw(self)

Shape

__init__(self,x,y,radius)
__str__(self)
__eq__(self)
draw(self)

Circle

c1 = Circle(1,2,4.0)
print(str(c1))

• Which __str__ do we use?
§ Start at bottom class folder
§ Find first method with name
§ Use that definition

• Each subclass automatically inherits
methods of parent.

• New method definitions override
those of parent.

29

Name Resolution Revisited
• To look up attribute/method name

1. Look first in instance (object folder)
2. Then look in the class (folder)

• Subclasses add two more rules:
3. Look in the superclass
4. Repeat 3. until reach object

Often called the Bottom–Up Rule

radius 4.0

id3

y 2x 1c1 id3

Circle

. . .
object

__init__(self,x,y, radius)
draw(self)

Circle(Shape)

__init__(self,x,y)

draw(self)

Shape()

c1 = Circle(1,2,4.0)
r = c1.radius
c1.draw()

Operator Overloading: Equality

class Fraction():
"""Instance attributes:

numerator: top [int]
denominator: bottom [int > 0]"""

def __eq__(self,q):
"""Returns: True if self, q equal,

False if not, or q not a Fraction"""
if type(q) != Fraction:

return False
left = self.numerator*q.denominator
right = self.denominator*q.numerator
return left == right 30

Implement __eq__ to check for equivalence of two Fractions instead

eq vs. is

== compares equality
is compares identity

c1 = Circle(1, 1, 25)
c2 = Circle(1, 1, 25)
c3 = c2

c1 == c2 à ?
c1 is c2 à ?
c2 == c3 à ?
c2 is c3 à ?

c1 id4

id4
Circle

radius 25

y 1

x 1

id5
Circle

radius 25

y 1

x 1

c2 id5

c3 id5

True
False
True
True

The isinstance Function

isinstance(<obj>,<class>)
§ True if <obj>’s class is same as or a

subclass of <class>
§ False otherwise

Example:
c1 = Circle(1,2,4.0)
• isinstance(c1,Circle) is True
• isinstance(c1,Shape) is True
• isinstance(c1,object) is True

• isinstance(c1,str) is False
• Generally preferable to type

§ Works with base types too! 32

c1 id4

id4
Circle

object

Shape

Circleradius 4.0

y 2

x 1

Lists: objects with special "string-like" syntax

List
• Attributes are indexed

§ Example: x[2]

Objects
• Attributes are named

§ Example: p.x

33

id2x id3

x 1

y 2

z 3

Point3
id2

0
1
2
3

5
7
4
-2

list
id3p

Heap Space Global Space Heap Space Global Space

34

• s = 'abc d'

• Put characters in quotes
§ Use \' for quote character

• Access characters with []
§ s[0] is 'a'
§ s[5] causes an error
§ s[0:2] is 'ab' (excludes c)
§ s[2:] is 'c d‘

• len(s) à 5, length of string

List
• x = [5, 6, 5, 9, 15, 23]

• Put values inside []
§ Separate by commas

• Access values with []
§ x[0] is 5
§ x[6] causes an error
§ x[0:2] is [5, 6] (excludes 2nd 5)
§ x[3:] is [9, 15, 23]

• len(x) à 6, length of list

Sequences: Lists of Values
String

a b c d
0 1 2 3 4

5 6 5 9 15
0 1 2 3 4

23
5

Sequence is a name we give to both

id1

0
1
2
3

5
7
4
-2

list

List is mutable; strings are not

• Format:
<var>[<index>] = <value>
§ Reassign at index
§ Affects folder contents
§ Variable is unchanged

• Strings cannot do this
§ Strings are immutable

x = [5, 7,4,-2]
x[1] = 8
s = “Hello!”
s[0] = ‘J’
TypeError: 'str' object does not
support item assignment

id1x

x 8

Heap Space Global Space

“Hello!”s

Things that Work for All Sequences

x = [5, 6, 9, 6, 15, 5]s = ‘slithy’

x.index(5) → 0
x.count(6) → 2
len(x) → 6
x[4] → 15
x[1:3] → [6, 9]
x[3:] → [6, 15, 5]
x[–2] → 15
x + [1, 2] → [5, 6, 9, 6, 15, 5, 1, 2]
x * 2 → [5, 6, 9, 6, 15, 5, 5, 6, 9, 6, 15, 5]
15 in x → True

s.index(‘s’) → 0
s.count(‘t’) → 1
len(s) → 6
s[4] → “h”
s[1:3] → “li”
s[3:] → “thy”
s[–2] → “h”
s + ‘ toves’ → “slithy toves”
s * 2 → “slithyslithy”
‘t’ in s → True

methods

built-in fns

slicing
op

er
at

or
s

36

id8
dict

Dictionaries are mutable

1. Can reassign values
§ d['ec1'] = 'Ellis'

2. Can add new keys
§ d['psb26'] = 'Pearl'

3. Can delete keys
§ del d['tm55']

37

id8d

'Ezra'

'Toni'

d = {'ec1':'Ezra',
'ec2':'Ezra',
'tm55':'Toni'}

'Ellis'

'tm55'

'ec2'

'ec1'

'psb26' 'Pearl'
û û

Deleting key deletes both
key and value

Nested Lists

• Lists can hold any objects
• Lists are objects
• Therefore lists can hold other lists!

b = [3, 1]
c = [1, 4, b]
a = [2, 1]
x = [1, a, c, 5]

38

id1b

id2c

id3a

id4x

Global Space

id1

3
11

0

Heap

id2

1
4
id1

1
0

2

id3

2
11

0
id4

1
id3
id2
5

1
0

2
3

This is drawing accurate, but a little hard to reason about…

Nested Lists

Conceptually, you can visualize
nested lists like this:

b = [3, 1]
c = [1, 4, b]
a = [2, 1]
x = [1, a, c, 5]

39

x = [1, [2, 1], [1, 4, [3, 1]], 5]

x = [1, [2, 1], [1, 4, [3, 1]], 5]

x[0]
x[1]

x[2]
x[3]

x[2][2]

x[2][0]

x[1][1]
x[2][2][0]

Conditionals: “Control Flow” Statements

if b:

s1 # statement

s3 # statement

if b:
s1

else:
s2

s3

40

b

Statements:
Execute

b Branch Point:
Evaluate & Choose

s3

s3

Flow
Program only

takes one path
during an
execution

(something will
not be executed!)

s1

True

False

s1
True

s2

False

Conditionals: If-Elif-Else-Statements (2)

Format Notes on Use

41

• No limit on number of elif
§ Must be between if, else

• else is optional
§ if-elif by itself is fine

• Booleans checked in order
§ Once Python finds a true

<Boolean-expression>, skips
over all the others

§ elsemeans all <Boolean-
expression> are false

if <Boolean expression>:
<statement>
…

elif <Boolean expression>:
<statement>
…
…

else:
<statement>
…

For Loops: Processing Sequences

for x in grades:
print(x)

• loop sequence: grades
• loop variable: x
• loop body: print(x)
To execute the for-loop:

1) Check if there is a “next”
element of loop sequence

2) If so:
• assign next sequence

element to loop variable
• Execute all of the body
• Go back to 1)

3) If not, terminate execution

grades has
more elements

put next
element in x

True

False

print(x)

42

For Loop with labels

def num_zeroes(the_list):
"""Returns: the number of zeroes in the_list
Precondition: the_list is a list"""

43

count = 0
for x in the_list:

if x == 0:
count = count + 1

return count

Loop sequence

Loop variable

Loop body

Accumulator variable

Modifying the Contents of a List
def add_bonus(grades):

"""Adds 1 to every element in a list of grades
(either floats or ints)"""
size = len(grades)
for k in range(size):

grades[k] = grades[k]+1

lab_scores = [8,9,10,5,9,10]
print("Initial grades are: "+str(lab_scores))
add_bonus(lab_scores)
print("With bonus, grades are: "+str(lab_scores))

44
Watch this in the

python tutor!

If you need to
modify the list, you

need to use range to
get the indices.

Beyond Sequences: The while-loop

while <condition >:
statement 1
…
statement n

Relationship to for-loop
§Broader notion of

“keep working until done”
§Must explicitly ensure

condition becomes false
§You explicitly manage what

changes per iteration
45

condition body
True

False

body

Recursion

Recursive Function:
A function that calls itself

Two parts to every recursive function:
1. A simple case: can be solved easily
2. A complex case: can be made simpler (and simpler,

and simpler… until it looks like the simple case)

46

Recursion is great for Divide and Conquer

Goal: Solve problem P on a piece of data

47

data
Idea: Split data into two parts and solve problem

data 1 data 2

Solve Problem P Solve Problem P

Combine Answer!

Three Steps for Divide and Conquer

1. Decide what to do on “small” data
§ Some data cannot be broken up
§ Have to compute this answer directly

2. Decide how to break up your data
§ Both “halves” should be smaller than whole
§ Often no wrong way to do this (next lecture)

3. Decide how to combine your answers
§ Assume the smaller answers are correct
§ Combine them to give the aggregate answer

48

def factorial(n):
"""Returns: factorial of n.
Precondition: n ≥ 0 an int"""
if n == 0:

return 1
return n*factorial(n-1)

factorial(3)

Recursive Call Frames (all calls complete!)

49

1
2
3

factorial 1, 3

n3

n2

factorial 1, 3

n1

factorial 1, 3

n0

factorial 1, 2

RETURN 1

RETURN 1

RETURN 2

RETURN 6

Search Algorithms

Recall from last lecture:
• Searching for data is a common task

§ Linear search: on the order of n
• input doubles? à work doubles!

§ Binary search: on the order of log2 n
• input doubles? à work increases by just 1 unit!
• BUT data needs to be sorted…

• Sorting data now suddenly interesting…

50

Sorting Algorithms

• Sorting data is a common task
§ Insertion sort: on the order of n2

• input doubles? à work quadruples! (yikes)

§ Merge sort: on the order of n·log2(n)
• input doubles? à work increases by a bit more than double

51

For fun, check out the visualizations:
https://www.youtube.com/watch?v=xxcpvCGrCBc
https://www.youtube.com/watch?v=ZRPoEKHXTJg

https://www.youtube.com/watch?v=xxcpvCGrCBc
https://www.youtube.com/watch?v=ZRPoEKHXTJg

52

53

