
Lecture 23:
More Algorithms for Sorting

CS 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2022sp Announcements

Next Tuesday:
§ Lecture is a review session.
§ There will be no post-lecture office hours.

Course Staff also hosting additional review
sessions (possibly during study days).
Announcements forthcoming.

3

Search Algorithms

Recall from last lecture:

• Searching for data is a common task

§ Linear search: on the order of n

• input doubles? à work doubles!
§ Binary search: on the order of log2 n

• input doubles? à work increases by just 1 unit!
• BUT data needs to be sorted…

• Sorting data now suddenly interesting…

4

Sorting Algorithms

• Sorting data is a common task

§ Insertion sort: on the order of n2

• input doubles? à work quadruples! (yikes)

• Today's topic:
§ Merge sort: can we do better than Insertion Sort?

5

Which algorithm does Python’s sort use?

• Recursive algorithm that runs much faster than
insertion sort for the same size list (when the size is big)!

• A variant of an algorithm called “merge sort”

• Based on the idea that sorting is hard, but “merging”
two already sorted lists is easy.

6

11L 17 19 R 14 15 16 18

11L 14 15 16 17 18 19

merge

Merge sort: Motivation

What if those two helpers
each had two sub-helpers?

Since merging is easier than sorting, if I
had two helpers, I’d…

•Give each helper half the array to sort
•Then I get back their sorted subarrays

and merge them.

And the sub-helpers each had
two sub-sub-helpers? And…

8

Subdivide the sorting task

J NR CP DF LA QB KM GH E

A QB KM GH E J NR CP DF L

9

Subdivide again

A QB KM GH E J NR CP DF L

M GH E A QB K P DF L J NR C

10

And again

M GH E A QB K P DF L J NR C

M GH E A QB K P DF L J NR C

11

And one last time

J NR CP DF LA QB KM GH E

M GH E A QB K P DF L J NR C

12

Now merge

G ME H A QB K D PF L J NC R

J NR CP DF LA QB KM GH E 13

And merge again

H ME G K QA B L PD F N RC J

G ME H A QB K D PF L J NC R

14

And again

M QH KE GA B P RL NF JC D

H ME G K QA B L PD F N RC J

15

And one last time

M QH KE GA B P RL NF JC D

E FC DA B J KG H N PL M Q R

16

Done!

E FC DA B J KG H N PL M Q R

def mergeSort(li):
"""Sort list li using Merge Sort"""
if len(li) > 1:

Divide into two parts
mid= len(li)//2
left= li[:mid]
right= li[mid:]

Recursive calls
mergeSort(left)
mergeSort(right)

Merge left & right back to li
???

base case does nothing!
a list with len 0 or 1 is sorted!

18

The central sub-problem is the merging of two
sorted lists into one single sorted list

12 33 4535

15 42 6555 75

12 15 3533 42 45 55 7565

Approach:
keep comparing the

smallest element of first
list with smallest

element of second list.

12 33 4535

15 42 6555 75

x

y

z

0

0

0

i

j

k

How to Merge

i

10 2 3 4 5 6 7 8

10 2 3 4

10 2 3

j

k

as long as both x and y

have unprocessed elements

x[i] <= y[j] ?

Yes!

12 33 4535

15 42 6555 75

12

x

y

z

0

0

0
10 2 3 4 5 6 7 8

10 2 3 4

10 2 3

i

j

i

j

k

k

How to Merge
as long as both x and y

have unprocessed elements

x[i] <= y[j] ?

Yes!

copy x[i] to z

12 33 4535

15 42 6555 75

12

x

y

z

1

0

1
10 2 3 4 5 6 7 8

10 2 3 4

10 2 3

i

j

i

j

k

k

How to Merge
as long as both x and y

have unprocessed elements

x[i] <= y[j] ?

No!

12 33 4535

15 42 6555 75

12 15

x

y

z

1

0

1
10 2 3 4 5 6 7 8

10 2 3 4

10 2 3

i

j

i

j

k

k

How to Merge
as long as both x and y

have unprocessed elements

x[i] <= y[j] ?

No!

copy y[j] to z

12 33 4535

15 42 6555 75

12 15

x

y

z

1

1

2
10 2 3 4 5 6 7 8

10 2 3 4

10 2 3

i

j

i

j

k

k

How to Merge
as long as both x and y

have unprocessed elements

x[i] <= y[j] ?

Yes!

12 33 4535

15 42 6555 75

12 15 33

x

y

z

1

1

2
10 2 3 4 5 6 7 8

10 2 3 4

10 2 3

i

j

i

j

k

k

How to Merge
as long as both x and y

have unprocessed elements

x[i] <= y[j] ?

Yes!

copy x[i] to z

12 33 4535

15 42 6555 75

12 15 33

x

y

z

2

1

3
10 2 3 4 5 6 7 8

10 2 3 4

10 2 3

i

j

i

j

k

k

How to Merge
as long as both x and y

have unprocessed elements

x[i] <= y[j] ?

Yes!

12 33 4535

15 42 6555 75

12 15 3533

x

y

z

2

1

3
10 2 3 4 5 6 7 8

10 2 3 4

10 2 3

i

j

i

j

k

k

How to Merge
as long as both x and y

have unprocessed elements

x[i] <= y[j] ?

Yes!

copy x[i] to z

12 33 4535

15 42 6555 75

12 15 3533

x

y

z

3

1

4
10 2 3 4 5 6 7 8

10 2 3 4

10 2 3

i

j

i

j

k

k

How to Merge
as long as both x and y

have unprocessed elements

x[i] <= y[j] ?

No!

12 33 4535

15 42 6555 75

12 15 3533 42

x

y

z

3

1

4
10 2 3 4 5 6 7 8

10 2 3 4

10 2 3

i

j

i

j

k

k

How to Merge
as long as both x and y

have unprocessed elements

x[i] <= y[j] ?

No!

copy y[j] to z

12 33 4535

15 42 6555 75

12 15 3533 42

x

y

z

3

2

5
10 2 3 4 5 6 7 8

10 2 3 4

10 2 3

i

j

i

j

k

k

How to Merge
as long as both x and y

have unprocessed elements

x[i] <= y[j] ?

Yes!

12 33 4535

15 42 6555 75

12 15 3533 42 45

x

y

z

3

2

5
10 2 3 4 5 6 7 8

10 2 3 4

10 2 3

i

j

i

j

k

k

How to Merge
as long as both x and y

have unprocessed elements

x[i] <= y[j] ?

Yes!

copy x[i] to z

12 33 4535

15 42 6555 75

12 15 3533 42 45

x

y

z

4

2

6
10 2 3 4 5 6 7 8

10 2 3 4

10 2 3

i

j

i

j

k

k

How to Merge
as long as both x and y

have unprocessed elements

12 33 4535

15 42 6555 75

12 15 3533 42 45 55

x

y

z

4

2

6
10 2 3 4 5 6 7 8

10 2 3 4

10 2 3

i

j

i

j

k

k

How to Merge
as long as y has

unprocessed elements

copy y[j] to z

12 33 4535

15 42 6555 75

12 15 3533 42 45 55

x

y

z

4

3

7
10 2 3 4 5 6 7 8

10 2 3 4

10 2 3

i

j

i

j

k

k

How to Merge
as long as y has

unprocessed elements

12 33 4535

15 42 6555 75

12 15 3533 42 45 55 65

x

y

z

4

3

7
10 2 3 4 5 6 7 8

10 2 3 4

10 2 3

i

j

i

j

k

k

How to Merge
as long as y has

unprocessed elements

copy y[j] to z

12 33 4535

15 42 6555 75

12 15 3533 42 45 55 65

x

y

z

4

4

8
10 2 3 4 5 6 7 8

10 2 3 4

10 2 3

i

j

i

j

k

k

How to Merge
as long as y has

unprocessed elements

12 33 4535

15 42 6555 75

12 15 3533 42 45 55 7565

x

y

z

4

4

8
10 2 3 4 5 6 7 8

10 2 3 4

10 2 3

i

j

i

j

k

k

How to Merge
as long as y has

unprocessed elements

copy y[j] to z

12 33 4535

15 42 6555 75

12 15 3533 42 45 55 7565

x

y

z

4

5

9
10 2 3 4 5 6 7 8

10 2 3 4

10 2 3

i

j

k

i

j

k

How to Merge
as long as y has

unprocessed elements

def merge(x, y, z):

Given: sorted lists x and y

list z, has the combined length of x and y...

nx = len(x); ny = len(y)

i = 0; j = 0; k = 0;

while i<nx and j<ny:

Deal with remaining values in x or y

(1/3)

def merge(x, y, z):

Given: sorted lists x and y

list z, has the combined length of x and y...

nx = len(x); ny = len(y)

i = 0; j = 0; k = 0;

while i<nx and j<ny:

if x[i] <= y[j]:

z[k]= x[i]; i=i+1

else:

z[k]= y[j]; j=j+1

k=k+1

Deal with remaining values in x or y

(2/3)

def merge(x, y, z):

Given: sorted lists x and y

list z, has the combined length of x and y...

nx = len(x); ny = len(y)

i = 0; j = 0; k = 0;

while i<nx and j<ny:

if x[i] <= y[j]:

z[k]= x[i]; i=i+1

else:

z[k]= y[j]; j=j+1

k=k+1

Deal with remaining values in x or y

while i<nx: # copy any remaining x-values

z[k]= x[i]; i=i+1; k=k+1

while j<ny: # copy any remaining y-values

z[k]= y[j]; j=j+1; k=k+1

(3/3)

41

def mergeSort(li):
"""Sort list li using Merge Sort"""
if len(li) > 1:

Divide into two parts
mid= len(li)/2
left= li[:mid]
right= li[mid:]

Recursive calls
mergeSort(left)
mergeSort(right)

Merge left & right back to li
merge(left, right, li)

Sorting Algorithms

• Sorting data is a common task

§ Insertion sort: on the order of n2

• input doubles? à work quadruples! (yikes)

• Today's topic:
§ Merge sort: did we do better than Insertion Sort?

work = one comparison

How many comparisons do we make?

42 43

Merge sort:
~ log2(n) “levels” X ~ n comparisons each level

J NR CP DF LA QB KM GH E

? ? ? ? ? ? ? ?

Sorting Algorithms

• Sorting data is a common task

§ Insertion sort: on the order of n2

• input doubles? à work quadruples! (yikes)

§ Merge sort: on the order of n·log2(n)

Should we always use merge sort then?
Python's sort actually combines merge and insertion sort!

44

Order of
magnitude
difference

For fun, check out the visualizations:
https://www.youtube.com/watch?v=xxcpvCGrCBc
https://www.youtube.com/watch?v=ZRPoEKHXTJg

