Announcements

Lecture 23:

More Algorithms for Sorting

CS 1110
Introduction to Computing Using Python

Search Algorithms

Recall from last lecture:

- Searching for data is a common task
- Linear search: on the order of n
\bullet input doubles? \rightarrow work doubles!
- Binary search: on the order of $\log 2 n$
\bullet input doubles? \rightarrow work increases by just 1 unit!
- BUT data needs to be sorted...
- Sorting data now suddenly interesting...

Which algorithm does Python's sort use?

- Recursive algorithm that runs much faster than insertion sort for the same size list (when the size is big)!
- A variant of an algorithm called "merge sort"
- Based on the idea that sorting is hard, but "merging" two already sorted lists is easy.

L | 11 | 14 | 15 | 16 | 17 | 18 | 19 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Next Tuesday:

- Lecture is a review session.
- There will be no post-lecture office hours.

Course Staff also hosting additional review sessions (possibly during study days).
Announcements forthcoming.

Sorting Algorithms

- Sorting data is a common task
- Insertion sort: on the order of n^{2}
- input doubles? \rightarrow work quadruples! (yikes)
- Today's topic:
- Merge sort: can we do better than Insertion Sort?

Merge sort: Motivation

Subdivide the sorting task

And again

10

Now merge

And one last time

\square

And merge again

\section*{| A | B | C | D | E | F | G | H | J | K | L | M | N | P | Q | R |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline \mathrm{A} & \mathrm{~B} & \mathrm{E} & \mathrm{G} & \mathrm{H} & \mathrm{~K} & \mathrm{M} & \mathrm{Q} \\
\hline
\end{array} \quad \begin{array}{|l|l|l|l|l|l|l|l|}
\hline \mathrm{C} & \mathrm{D} & \mathrm{~F} & \mathrm{~J} & \mathrm{~L} & \mathrm{~N} & \mathrm{P} & \mathrm{R} \\
\hline
\end{array}
$$

E G H			

Done!

The central sub-problem is the merging of two sorted lists into one single sorted list

Approach:
keep comparing the smallest element of first list with smallest element of second list.

12	15	33	35	42	45	55	65	75

How to Merge
as long as both x and y have unprocessed elements

How to Merge
as long as both x and y have unprocessed elements

How to Merge
as long as both x and y have unprocessed elements

copy $y[j]$ to z

How to Merge
as long as both x and y have unprocessed elements

copy $x[i]$ to z

z

How to Merge have unprocessed elements

How to Merge
as long as both x and y have unprocessed elements

$x[i]<=y[j]$? Yes!

How to Merge
as long as both x and y have unprocessed elements

How to Merge
as long as both x and y have unprocessed elements

How to Merge
as long as both x and y have unprocessed elements

$x[i]<=y[j]$? No!

y | 15 | 42 | 55 | 65 | 75 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 2 | 3 | 4 |

copy $y[j]$ to z
z

How to Merge

as long as both x and y have unprocessed elements

z

How to Merge
as long as both x and y have unprocessed elements

$x[i]<=y[j]$?
No!

\sqrt{k}
Z

How to Merge
as long as both x and y have unprocessed elements

$x[i]<=y[j]$? Yes!

j

How to Merge

How to Merge | as long as y has |
| :---: |
| unprocessed elements |

(i) copy $\mathrm{y}[\mathrm{j}]$ to z

x | 12 | 33 | 35 | 45 |
| :---: | :---: | :---: | :---: |
| 0 | 1 | 2 | 3 |

How to Merge
as long as y has unprocessed elements

How to Merge
as long as y has unprocessed elements

$j \quad 4$
z

z

How to Merge

> as long as y has unprocessed elements (i) copy $\mathrm{y}[\mathrm{j}]$ to z
X

Y

How to Merge

\square

as long as y has unprocessed elements

\sqrt{k}

(1/3)
def merge(x, y, z):
\# Given: sorted lists x and y
\# list z, has the combined length of x and $y .$.
$n x=\operatorname{len}(x) ; n y=\operatorname{len}(y)$
i = 0; j = 0; k = 0;
while $i<n x$ and $j<n y$:
\# Deal with remaining values in x or y
(3/3)
def merge(x, y, z):
\# Given: sorted lists x and y
\# list z, has the combined length of x and $y . .$.
$n x=\operatorname{len}(x) ; n y=l e n(y)$
i = 0; j = 0; k = 0;
while $\mathbf{i}<n x$ and $j<n y$:
if $x[i]<=y[j]:$
$z[k]=x[i] ; \quad i=i+1$
else:
$z[k]=y[j] ; \quad j=j+1$
$k=k+1$
\# Deal with remaining values in x or y
while i<nx: \# copy any remaining x-values

$$
z[k]=x[i] ; \quad i=i+1 ; \quad k=k+1
$$

while j<ny: \# copy any remaining y-values $z[k]=y[j] ; \quad j=j+1 ; \quad k=k+1$

Sorting Algorithms

- Sorting data is a common task
- Insertion sort: on the order of n^{2}
- input doubles? \rightarrow work quadruples! (yikes)
- Today's topic:
- Merge sort: did we do better than Insertion Sort?
work = one comparison
How many comparisons do we make?
(2/3)
def merge($x, y, z)$:
\# Given: sorted lists x and y
\# list z, has the combined length of x and $y . .$.
$n x=\operatorname{len}(x) ; n y=l e n(y)$
i = 0; j = 0; k = 0;
while $i<n x$ and $j<n y$:
if $x[i]<=y[j]:$ $z[k]=x[i] ; \quad i=i+1$ else: $z[k]=y[j] ; \quad j=j+1$ $\mathrm{k}=\mathrm{k}+1$
\# Deal with remaining values in x or y

```
def mergeSort(li):
    """Sort list li using Merge Sort"""
    if len(li) > 1:
        # Divide into two parts
        mid= len(li)/2
        left= li[:mid]
        right= li[mid:]
        # Recursive calls
        mergeSort(left)
        mergeSort(right)
        # Merge left & right back to li
        merge(left, right, li)
```

Merge sort:
$\sim \log _{2}(\mathrm{n})$ "levels" $\mathrm{X} \sim \mathrm{n}$ comparisons each level

Sorting Algorithms

- Sorting data is a common task
- Insertion sort: on the order of n^{2}
\bullet input doubles? \rightarrow work quadruples! (yikes)
- Merge sort: on the order of $n \cdot \log _{2}(n) \quad \begin{aligned} & \text { Order of } \\ & \text { magnitude } \\ & \text { difference }\end{aligned}$

Should we always use merge sort then?
Python's sort actually combines merge and insertion sort!
For fun, check out the visualizations:
https://www.youtube.com/watch?v=xxcpvCGrCBc

