Lecture 19:

More on Subclassing
(Chapter 18)

CS 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2022sp

Announcements

e Prelim 2 will be returned mid/late next week
e Don't Panic!

= Final is 30% so you can make up for any mis-steps

Topics

Continuation from last lecture
e Design considerations for overriding methods

e Name resolution for attributes and methods

e Different kinds of comparisons on objects

Goal: Make a drawing app

L]
0]
A
L3
(]

Rectangles, Stars,
Circles, and Triangles
have a lot in common,
but they are also
different in very
fundamental ways....

See shapes_v@.py

Recall: our Class Hierarchy

class Shape: Superclass

A shape located at x,y

Shape

Parent class
def _init (self, x, y): .. Base class
def draw(self): .. Sulackes
Child class l
class Circle(Shape): Derived class />Rectangle
"""An instance is a circle."""

def init (self, x, y, radius): ..
def draw(self): ..

class Rectangle(Shape):
"""An in stance is a rectangle.
def init (self, x, y, ht, len): .. _
def draw(self): .. .-

Circle

Recall : overriding & calling 1nit

class Shape:

A shape @ location x,y
def init (self, x, y):

self.x = X
self.y =y

class Circle(Shape):

Instance is Circle @ x,y w/size radius
def _init_ (self, x, y, radius):
super().__init_ (x,y)

self.radius = radius

Subtle: super () calls the superclass' init method
super().super() € not athing

Demo using Turtle Graphics

o >
A turtle holds a pen and can draw as it walks! Follows
simple commands:

°* setx, sety —set start coordinate

 pendown, penup — control whether to draw when moving
 forward

* turn Just a demo! You do not need .to doJ
(anything with Turtle Graphics

Part of the turtle module in Python

(docs.python.org/3.7/library/turtle.html)
* You don’t need to know it

* Just a demo to explain design choices of draw() in
our classes Shape, Circle, Rectangle, Square

https://docs.python.org/3.7/library/turtle.html

Who draws what?

class Shape:

"""Moves pen to correct location™"""

def draw(self):
turtle.penup()
turtle.setx(self.x)
turtle.sety(self.y)
turtle.pendown()

Note: need to import the turtle
module which allows us to move a
pen on a 2D grid and draw shapes.

" No matter the shape, we

Jobfor _| want to pick up the pen,
class Circle(Shape): >hape | move to the location of the
"""Draws Circle""" _shape, put the pen down.
def draw(self): Jobfor [But onIy the Shape

super().draw() subclasses

turtle.circle(self.radius)

See shapes _v3.py, draw_shapes.py

subclasses know how to do

_the actual drawing.

Understanding Method Overriding

e Subclass inherits methods of parent
e Subclass definitions override those of parent

cl = Circle(1,2,4.0)

cl.draw()

e Which draw() do we use?
= Start at bottom class folder
" Find first method with name
= Use that definition

[Optional] wondering what’s in the object class? See
https://docs.python.org/3/reference/datamodel.html#basic-customization

Q1: Name Resolution and Inheritance

class A: e Execute the following:
def f(self): >>> a = A()
return self.g() >>> b = B()
def g(SEl'F)I e What is value Ofa.'F()?
t 10
return 210
B: 14
class B(A): C:5
def g(self): D: ERROR
return 14 E: 1 don’t know

def h(self):
return 18 1

Q2: Name Resolution and Inheritance

class A: e Execute the following:
def f(self): >>> a = A()
return self.g() >>> b = B()
def g(SEl'F)I e What is value of .'F()?
t 10
return 210
B: 14
class B(A): C:5
def g(self): D: ERROR
return 14 E: 1 don’t know

def h(self):
return 18 13

Class Variables can also be Inherited

class Shape: # inherits from object by default

Instance is shape @ X,y

Class Attribute tracks total num shapes
NUM_SHAPES = ©

class Circle(Shape):

nmiyy

Instance is a Circle @ x,y with radius
Class Attribute tracks total num circles
NUM_CIRCLES = ©

Q3: Name Resolution and Inheritance

class A: JPAp
X = 3 # Class Variable e Execute the following:
y = 5 # Class Variable >»> a = A()
def f(self): >>> b = B()
return self.g() e What is value of b.x?
def g(self):
return 10 A4
. () B:3
class :
y = 4 # Class Variable C: 42
z = 42 # Class Variable D: ERROR
def g(self): E: 1 don’t know

return 14

def h(self):
return 18 16

Q4: Name Resolution and Inheritance

class A: ,
X = 3 # Class Var\iable ® EXECUte the fO”OWIﬂgI
y = 5 # Class Variable >>> a = A()
def f(self): >>> b = B()
return self.g() e Whatis valueofa.z?
def g(self):
return 10 A4
1 B(A) 5: 3
class :
y =4 # Class Variable C: 42
z = 42 # Class Variable D: ERROR
def g(self): E: |l don’t know

return 14

def h(self):
return 18 18

A4: Name Resolution and Inheritance

class A: ,
X = 3 # Class Var\iable ® EXECUte the fO”OWIﬂgI
y = 5 # Class Variable >>> a = A()
def f(self): >>> b = B()
return self.g() e Whatisvalueofa.z?
def g(self):
return 10 A: 4
. 3(A) B:3
class :
y =4 # Class Variable C: 42
Z = 42 # Class Variable D: ERROR CORRECT
def g(self): E: I don’t know

return 14

def h(self):
return 18

19

Inheritance-related terminology

e eqvs is
e isinstance

20

egvs. 1s

== compares equality
1s compares identity

cll id4
cl = Circle(1, 1, 25)
. c2| id5
c2 = Circle(1, 1, 25)
cl == ¢c2 2 ?
cl is c2 -2 °?
c2 == ¢c3 2 ?

c2 is ¢c3 =2 ?

id4

Circle

X

y

radius

id5

1

1

25

Circle

X

y

radius

1

1

25

The 1sinstance Function

isinstance(<obj>,<class>)

* True if <obj>"s class is same as or a cl| id4

subclass of <class>

" False otherwise ida
Example: Circle
cl = Circle(1,2,4.90) T
e isinstance(cl,Circle) isTrue o[

e isinstance(cl,Shape) isTrue radius | 4.0

e isinstance(cl,object) is True

e isinstance(cl,str) isFalse

e Generally preferable to type
= Works with base types too!

object

8 L

Circle

4

23

Q5: 1isinstance and Subclasses

>>> sl = Rectangle(0,0,10,10)
>>> isinstance(sl, Square)

PP
sl | id5
id5
A: True Rectangle
B: False
C: Error x| 1
D: | don’t know ylL 2

A5: 1sinstance and Subclasses

>>> sl = Rectangle(0,0,10,10)

>>> isinstance(sl, Square)

PP

A: True
B: False
C: Error
D: I don’t know

object

“extends” T
or “is an instance of”

Shape
“extends”
or “is an instance of”

Rectangle

“extends” T
or “is an instance of”

Square

25

Next Lecture

Programming Practice

Develop classes: Animal, Bird, Fish,
Penguin, Parrot

nstances can swim, fly, and speak based on
class membership

27

Questions to ask

What does the class hierarchy look like?

What are class attributes? What are instance
attributes? What are constants?

What doesthe init function look like?
How do we support default weights?

How do we implement the class methods?

What does a "stringified" Animal look like?
str(a)

28

