
Lecture 16:
More on Classes

(Chapter 17)

CS 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2022sp Announcements
• Prelim 2 alternate time request form live due 4/1

§ Are you enrolled in? CHEM 2090, AEM 2601, ECON 1120,
HADM 1360 à FILL OUT THE SURVEY!

• To reduce wait times during consulting hours:
If wait time exceeds 20 mins, we will shift to a
15-minutes-per-student system.

• Remember to reach out to your lab leads for lab-
related support.
(https://www.cs.cornell.edu/courses/cs1110/2022s
p/timeplace/) 3

We know how to make:

• Class definitions
• Class specifications
• The __init__ function
• Attributes (using self)
• Class attributes
• Class methods

4

Go back to previous lecture
Go over the "Rules to live by" slides

5

__init__ is just one of many Special Methods
Start/end with 2 underscores
§ This is standard in Python
§ Used in all special methods
§ Also for special attributes

__init__ for initializer
__str__ for str()
__eq__ for ==
__lt__ for <, …

class Point2():
"""Instances are points in 2D space"""

def __init__(self,x=0,y=0):
<snip>

def __str__(self):
"""Returns: string with contents"""

return '(' + str(self.x) + ', ' +
str(self.y) + ')'

def __eq__(self, other):
"""Returns: True if both coords equal"""
return self.x == other.x

and self.y == other.y

6

See Fractions example at the end of this lecture
Optional: for a complete list, see
https://docs.python.org/3/reference/datamodel.html#basic-customization

• Type: set of values and the operations on them
§ int: (set: integers; ops: +, –, *, /, …)
§ Point2 (set: x,y coordinates; ops: distanceTo, …)
§ Card (set: suit * rank combinations; ops: ==, !=, <)
§ Others to think about: Person, Student, Image, Date, etc.

• To define a class, think of a type you want to make

Designing Types

7

Making a Class into a Type
1. What values do you want in the set?

§ What are the attributes? What values can they have?
§ Are these attributes shared between instances (class

attributes) or different for each instance (instance attributes)?
§ What are the class invariants: things you promise to keep

true after every method call (see n_credit invariant)

2. What operations do you want?
§ This often influences the previous question
§ What are the method specifications: states what the

method does & what it expects (preconditions)
§ Are there any special methods that you will need to provide?

Write your code to make it so! 8

Planning out a Class: Fraction
• What attributes? What invariants?
• What methods? What initializer? other special methods?
class Fraction:

"""Instance is a fraction n/d
Attributes:

numerator: top [int]
denominator: bottom [int > 0] """

def __init__(self, n=0, d=1):
"""Init: makes a Fraction"""
assert type(n)==int
assert type(d)==int and d>0
self.numerator = n
self.denominator = d 9

What is equality?
f1 = Fraction(2,5)
f2 = Fraction(2,5)
if f1 == f2:
do we go here?

else:
or here?

By default, == compares folder IDs

10

numerator 2

denominator 5

Fraction
id3

numerator 2

denominator 5

Fraction
id4

id3f1

id4f2

Global Space Heap Space

Operator Overloading: Equality

class Fraction():
"""Instance attributes:

numerator: top [int]
denominator: bottom [int > 0]"""

def __eq__(self,q):
"""Returns: True if self, q equal,

False if not, or q not a Fraction"""
if type(q) != Fraction:

return False
left = self.numerator*q.denominator
right = self.denominator*q.numerator
return left == right 11

Implement __eq__ to check for equivalence of two Fractions instead

Problem: Doing Math is Unwieldy

What We Want

1
2 +

1
3 +

1
4 ∗ 54

What We Get

>>> p = Fraction(1,2)
>>> q = Fraction(1,3)
>>> r = Fraction(1,4)
>>> s = Fraction(5,4)
>>> (p.add(q.add(r))).mult(s)

12

Seriously?

Why not use the
standard Python

math operations?

Operator Overloading: Addition
class Fraction():

"""Instance attributes:
numerator: top [int]
denominator: bottom [int > 0]""”

def __add__(self,q):
"""Returns: Sum of self, q
Makes a new Fraction
Precondition: q a Fraction"""
assert type(q) == Fraction
bot = self.denominator*q.denominator
top = (self.numerator*q.denominator+

self.denominator*q.numerator)
return Fraction(top,bot)

>>> p = Fraction(1,2)
>>> q = Fraction(3,4)
>>> r = p+q

>>> r = p.__add__(q)

Python
converts to

Operator
overloading

uses method in
object on left.

13

Operator Overloading: Multiplication
class Fraction():

"""Instance attributes:
numerator: top [int]
denominator: bottom [int > 0]"""

def __mul__(self,q):
"""Returns: Product of self, q
Makes a new Fraction; does not
modify contents of self or q
Precondition: q a Fraction"""
assert type(q) == Fraction
top = self.numerator*q.numerator
bot = self.denominator*q.denominator
return Fraction(top,bot)

>>> p = Fraction(1,2)
>>> q = Fraction(3,4)
>>> r = p*q

>>> r = p.__mul__(q)

Python
converts to

14

