
Lecture 15:
Classes

(Chapters 15 & 17.1-17.5)

CS 1110

Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2022sp

• Call Frame on slide 10 is new. Check it out!
• Slide 27 had a typo! Needed to create the Course

before we could enroll in it
• The lecture stopped at slide 29 but slides 30-37

are also worth taking a peek at (including a Q&A)

Lecture Afterthoughts

2

Announcements

• Prelim 2 alternate time request form live Fri 3/25
• More 1-on-1's today thru Sunday.

§ Come one, come all! (Sign up on CMS.)
• A5 due date moved later to Sun 4/17.

§ The tradeoff: more time to work on A5, less "pressure" on
Spring break, BUT less time to look at the A5 solutions before
Prelim 2 (Tu 4/19) and temptation to delay prelim studying.
(Resist that temptation.)

• next week's lab 16 extended to Wed 4/13 due to
spring break

• These updates are on the Schedule webpage.
3

Recall: Objects as Data in Folders

• attributes: variables
within objects

• Type shown in the
corner

nums = [2,3,5]
nums[1] = 7

4

id1

0 2

1 3

2 5

list

type

unique
identifier

7

id1nums

Heap Space

Global Space

Classes are user-defined Types

Defining new classes =
adding new types to
Python

Example Classes
• Point3
• Rect
• Freq (A3), for word

frequencies
• Doll (class, lab)
• Song, Mix (A4)

5

id2

x 2

y 3

z 5

Point3

class name

Simple Class Definition

class <class-name>:

"""Class specification"""

<method definitions>

6

Just like function
definitions, but placed

inside a class definition,
i.e., indented relative to

the class header

class Course:

"""An instance is a Cornell course

Instance Attributes:

name: [str] name of the course of form: <DEPT NUM>

n_credit: [int] number of credits, must be > 0

"""

The Class Specification

7
Convention: capitalize first letter of class name

Attribute list

Short Summary

Description and invariant*

*more about this
later in this lecture

Attribute name

Constructor (1)

• Function to create new instances
§ function name is the class name

• Calling the constructor:
§ Makes a new object (folder) on the Heap

§ Returns the id of the folder

8

c1 = Course("CS 1110", 4)
c2 = Course("MATH 1920", 3)

Heap Space

id1c1
Global Space

id1

id2c2

Course

id2
Course

But how do we populate the folders?

Constructor (2)

• Function to create new instances
§ function name is the class name

• Calling the constructor:
§ Makes a new object (folder) on the Heap

§ Calls the __init__ method

§ Returns the id of the folder

9

c1 = Course("CS 1110", 4)
c2 = Course("MATH 1920", 3)

Heap Space

id1c1
Global Space

id1

id2c2

Course

id2
Course

__init__
populates

the folders!

two underscores

Special Method: __init__
def __init__(self, name, n_credit):

"""Initializer: creates a Course

name: [str] name of the course

n_credit: [int] num credits, must be > 0

"""
self.name = name

self.n_credit = n_credit

10

c1 = Course('CS 1110', 4)
this is the call to the constructor, which calls __init__

Param self: id of
instance being

initialized. Used to
assign attributes name 'CS 1110'

n_credit 4

Course

Heap Space

id1

__init__ (line #s)

selfid1

name"CS 1110"

n_credit4

return None

1. Constructor creates a new object (folder)
of the class Course on the Heap
§ Folder is initially empty
§ Has id

2. Constructor calls __init__ (self, "CS 1110", 4)
§ self = identifier ("Fill this folder!")
§ Other args come from the constructor call
§ commands in __init__ populate folder
§ __init__ has no return value! ("I filled it!")

3. Constructor returns the id
4. LHS variable created, id is value in the box

Course

Heap Space

id1

Evaluating a Constructor Expression

11c1 = Course("CS 1110", 4)

name 'CS 1110'
n_credit 4

id1c1
Global Space

Truths about Object Instantiation

1) Instantiate an object by calling the constructor
2) The constructor creates the folder
3) A constructor calls the __init__ method
4) __init__ puts attributes in the folder
5) The constructor returns the id of the folder

12

Invariants

• Properties of an attribute that must be true
• Works like a precondition:

§ If invariant satisfied, object works properly
§ If not satisfied, object is “corrupted”

• Example:
§ Course class: attribute name must be a string

• Purpose of the class specification

13

Checking Invariants with an Assert

class Course:

"""Instance is a Cornell course """

def __init__(self, name, n_credit):

"""Initializer: instance with name, n_credit courses

name: [str] name of the course of form: <DEPT NUM>

n_credit: [int] num credits, must be > 0

"""

self.name = name

self.n_credit = n_credit 14

assert type(name) == str, "name should be type str"
assert name[0].isalpha(), " name should begin with a letter"
assert name[-1].isdigit(), " name should end with an int"
assert type(n_credit) == int, "n_credit should be type int"
assert n_credit > 0, "n_credit should be > 0"

We know how to make:

• Class definitions
• Class specifications
• The __init__ method
• Attributes (using self)

15

Let's make another class!

class Student:

"""An instance is a Cornell student

Instance Attributes:

netID: student netID [str], 2-3 letters + 1-4 digits

courses: list of courses

major: declared major [str]

n_credit: [int] num credits this semester

"""

Student Class Specification, v1

16

Making Arguments Optional

• Can assign default values to __init__ arguments
§ Write as assignments to parameters in definition
§ Parameters with default values are optional

Examples:

s1 = Student(“xy1234”, [], "History") # arguments 1,2,3

s2 = Student(“xy1234”, course_list) # arguments 1 & 2

s3 = Student(“xy1234”, major="Art") # arguments 1 & 3

17

class Student:

def __init__(self, netID, courses=[], major=None):

self.netID = netID
self.courses = courses

self.major = major

< the rest of initializer goes here >

default values when
not specified

class Student:

"""An instance is a Cornell student

Instance Attributes:

netID: student netID [str], 2-3 letters + 1-4 digits

courses: list of courses

major: declared major [str]

n_credit: [int] num credits this semester

max_credit: [int] max num credits

"""

Student Class Specification, v2

19

What do you think about this?

New attribute!

A look at three v2 Student instances

20

id5

netID'abc123'

courses id2

Student

major "Music"

n_credit 15

max_credit 20

id6

netID'def456'

courses id3

Student

major"History"

n_credit 14

max_credit 20

id7

netID'gh7890'

courses id4

Student

major "CS"

n_credit 21

max_credit 20

Anything wrong with this?

Class Attributes

Class Attributes: Variables that belong to the Class
• One variable for the whole Class
• Shared by all object instances

• Access by <Class Name>.<attribute-name>

Why?
• Some variables are relevant to every object instance of a class
• Does not make sense to make them object attributes
• Doesn’t make sense to make them global variables, either

Example: we want all students to have the same credit limit
(Also in A4: all_of_em in both Song and Mix)

21

v3: Class Attributes – assign in class definition

class Student:

"""Instance is a Cornell student """

max_credit = 20

def __init__(self, netID, courses, major):

< specs go here >

< assertions go here >

self.netID = netID

self.courses = courses

self.major = major

self.n_credit = 0

for c in courses: # add up all the credits

self.n_credit = self.n_credit + c.n_credit

assert self.n_credit <= Student.max_credit, "over credits!"

22

Where does

max_credit

live in memory?

Refer to class attribute using class name 23

Classes Have Folders Too

Object Folders
• Separate for each instance
• Example: 2 Student objects

Class Folders
• Data common to all

instances

• Not just data!
• Everything common to

all instances goes here!

Student
id5s1

id6s2
20max_credit

netID 'abc123'

courses id2

Student

major "Music"

n_credit 15

id5

netID 'def456'

courses id3

Student

major "History"

n_credit 14

id6

Functions vs Object Methods

Function: call with object as argument

len(my_list)
print(my_list)

Method: function tied to the object

my_list.count(7)
my_list.sort()

24

function name function argument

object variable method name

Object Methods

• Attributes live in object folder
• Class Attributes live in class folder
• Methods live in class folder

25

Student

20max_credit

netID 'abc123'

courses id2

Student

major "Music"

n_credit 15

id5

__init__(self, netID,
courses, major)

Complete Class Definition

class <class-name>:

"""Class specification"""

<assignment statements>

<method definitions>

26

class Student():
"""Specification goes here.""”
max_credit = 20
def __init__(self, netID, courses, major):

. . . <snip> . . .

__init__(self,
netID, courses,
major)

Student

20max_credit

Python creates
the Class folder
after reading

the class
definition

Look like function definitions:
• But indented inside class
• 1st parameter always self

Another Method Definition

c1 = Course("AEM 2400", 4)

s1.enroll(c1)

§ enroll is defined in Student class folder
§ enroll is called with s1 as its first argument
§ enroll knows which instance of Student it is working with

class Student():

def __init__(self, netID, courses=[], major=None):
< init fn definition goes here >

def enroll(self, new_course):

if self.n_credit + new_course.n_credit > Student.max_credit:

print("Sorry your schedule is full!")
else:

self.courses.append(new_course)

self.n_credit = self.n_credit + new_course.n_credit

print("Welcome to "+ new_course.name)
27

More Method Definitions!

class Student:

def __init__(self, netID, courses=[], major=None):

< init fn definition goes here >

def enroll(self, name, n):

< enroll fn definition goes here >

def drop(self, course_name):

"""removes course with name course_name from courses list

updates n_credit accordingly

course_name: name of course to drop [str] """

for one_course in self.courses:
if one_course.name == course_name:

self.n_credit = self.n_credit – one_course.n_credit

self.courses.remove(one_course)

print("just dropped "+course_name)

print("currently at"+str(self.n_credit)+" credits")
28

We now know how to make:

• Class definitions
• Class specifications
• The __init__ function
• Attributes (using self)
• Class attributes
• Class methods

29

Rules to live by (1/1)

1. Refer to Class Attributes using the Class Name
s1 = Student("xy1234", [], "History")

print("max credits = " + str(Student.max_credit))

31

Name Resolution for Objects

• myobject.myattribute means
§ Go the folder for myobject
§ Find method myattribute
§ If missing, check class folder

§ If not in either, raise error

(Same thing applies to myobject.mymethod())

s1 = Student("xy1234", [], "History")

finds attribute in object folder

print(s1.netID)

finds attribute in class folder

print(s1.max_credit) ß dangerous 32

id5s1

__init__(self, netID,
courses, major)
enroll(self, new_coures, n)

Student

20max_credit

netID xy1234'

courses id2

Student

major "History"

n_credit 15

id5

Accessing vs. Modifying Class Variables

• Recall: you cannot assign to a global variable
from inside a function call

• Similarly: you cannot assign to a class attribute
from “inside” an object variable

s1 = Student(“xy1234”, [], "History")

Student.max_credit = 23 # updates class attribute

s1.max_credit = 24 # creates new object attribute

called max_credit

Better to refer to Class Variables

using the Class Name 33

Just like it did in the
__init__ method!

What gets Printed? (Q)

34

import college

s1 = college.Student(“jl200", [], "Art")
print(s1.max_credit)
s2 = college.Student(“jl202", [], "History")
print(s2.max_credit)
s2.max_credit = 23
print(s1.max_credit)
print(s2.max_credit)
print(college.Student.max_credit) C:

20
20
20
23
20

A:
20
20
23
23
23

B:
20
20
23
23
20

D:
20
20
20
23
23

What gets Printed? (A)

35

import college

s1 = college.Student(“jl200", [], "Art")
print(s1.max_credit)
s2 = college.Student(“jl202", [], "History")
print(s2.max_credit)
s2.max_credit = 23
print(s1.max_credit)
print(s2.max_credit)
print(college.Student.max_credit) C:

20
20
20
23
20

A:
20
20
23
23
23

B:
20
20
23
23
20

D:
20
20
20
23
23

CORRECT

Rules to live by (2/2)

1. Refer to Class Attributes using the Class Name
s1 = Student("xy1234", [], "History")

print("max credits = " + str(Student.max_credit))

2. Don’t forget self
§ in parameter list of method (method header)
§ when defining method (method body)

36

Don’t forget self, Part 1

37

s1 = Student(“xy1234”, [], "History")

c5 = Course("AEM 2400", 4)

s1.enroll(c5)

TypeError: enroll() takes 1 positional

arguments but 2 were given

def enroll(self, new_course): # if you forget self entirely
if self.n_credit + n > Student.max_credit:

print("Sorry your schedule is full!")
else:

self.courses.append(new_course)
self.n_credit = self.n_credit + new_course.n_credit
print("Welcome to "+ new_course.name)

always passes s1 as first argument!

Don’t forget self, Part 2

38

s1 = Student(“xy1234”, [], "History")

c5 = Course("AEM 2400", 4)

s1.enroll(c5)

NameError: global name

‘n_credit' is not defined

def enroll(self, new_course): # if you forget self in the body
if self.n_credit + n > Student.max_credit:

print("Sorry your schedule is full!")
else:

self.courses.append(new_course)
self.n_credit = self.n_credit + new_course.n_credit
print("Welcome to "+ new_course.name)

