4 ﬁ »

10/2022sp

Lecture 14:
More Recursion!

CS 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]


http://www.cs.cornell.edu/courses/cs1110/2022sp

e Slide 34 had a typo! Should be:
for parent in p.parents:

e Slide 30 & 35 now has folders to better
understand the Person class and its attributes



Announcements

e Reminder: prelim 1 regrade requests due on
Gradescope Wed 11:59pm

"When you review your prelim, if you believe a grading
error was made, you may request a regrade on
Gradescope until 11:59pm Wed Mar 23. We plan to
handle all the regrade requests in one pass, after the
regrade-request window has closed."”



Recursion

Recursive Function:
A function that calls itself (directly or indirectly)

Recursive Definition:
A definition that is defined in terms of itself



From previous lecture: Factorial

Non-recursive definition:
nl=n Xn-1X ..X2X1]
=n(n-1 X .. X2 X 1)

Recursive definition:
nl=n(n-1)! forn>0 Recursive case

Ol=1 Base case



Recursive Call Frames

def factorial(n): factorial

Returns: factorial of n.

31N

’Pr‘econdition: n 2 0 an int |
if n == 9:

2 return 1
3 return n*factorial(n-1)

factorial(3)



Recursive Call Frames

def factorial(n): factorial A3
"""Returns: factorial of n. : I
Precondition: n 2 @ an int""" |
1 ifn ==
2 return 1
H‘etur‘n n*factorial(n-1)
factorial(3) Now what?

Each call is a new frame!



What happens next? (Q)

def factorial(n):

"""Returns: factorial g

Precondition:
if n ==

' return 1
return n*factorial(n-1)

factorial(3)

n 2 0 an

factorial

Z3

A: B:
factorial A3 factorial | A, 2/1
31N ‘JZ 2
factorial 1
> I8 D:
| factorial | | 21
|
X 2 N
C: ERASE FRAME |
: f '
factorial 1 | Aeterael .
2
3| n |




Recursive Call Frames (n==2, execute line 1)

def factorial(n): factorial | |43
"""Returns: factorial of n. 3ln
recondition: n 2 @ an int""" |
1 if n == 0O: factorial 1
2 return 1
3 return n*factorial(n-1) 2|n

factorial(3)

10



Recursive Call Frames (n==2, execute line 3)

def factorial(n):

Precondition: n 2 @ an int
1 ifn ==

2 return 1
J 'return n*factorial(n-1)

factorial(3)

Returns: factorial of n.

factorial | |43
3N
factorial | |43
21N

11



Recursive Call Frames (n==1, execute line 1)

def factorial(n):

"""Returns: factorial of n.

recondition: n > © an int

1

2 return 1

if n ==

3 return n*factorial(n-1)

factorial(3)

factorial | |43
3N

factorial | |43
21N
I

factorial 1

1|n

12



Recursive Call Frames (n==1, execute line 3)

def factorial(n):

Returns: factorial of n.

Precondition: n 2 © an int"""
1 ifn ==

return 1

2
g 'return n*factorial(n-1)

factorial(3)

factorial | |43
3N

factorial | |43
21N

I

factorial | |43

1|n

13



Recursive Call Frames (n==0, execute line 1)

def factorial(n):

Returns: factorial of n.

recondition: n 2 @ an int

1

2 return 1

if n ==

3 return n*factorial(n-1)

factorial(3)

factorial | |43
3N

factorial | |43
21N

I

factorial | |43
1in

factorial 1

O|n

14



Recursive Call Frames (n==0, execute line 2)

1

2
3

def factorial(n):

Returns: factorial of n
Precondition: n 2 0 an int

ifyn == 0:
»r‘etur*n 1
return n*factorial(n-1)

factorial(3)

factorial | |43
3N

factorial | |43
21N

|

factorial | |43
1in

factorial | |4 2
@(n

15



Recursive Call Frames (n==0, RETURN 1)

1

2
3

def factorial(n):
"""Returns: factorial of n
Precondition: n 2 0 an int

if n == 0O:
#eturn 1
return n*factorial(n-1)

factorial(3)

factorial | |43
3N

factorial | |43
21N
I

factorial | |43
1in

factorial | | X2

O|n RETURN

16



Recursive Call Frames (n==1, finish line 3)

N

3

def factorial(n):
"""Returns: factorial of n
Precondition: n 2 @ an int
if n ==
re‘.!‘jl
return n*factorial(n-1)

factorial(3)

factorial | |43
3N

factorial | |43
21N

I

factorial | |43
1in

factorial | | ZZ

O|n RETURN

17



Recursive Call Frames (n==1, RETURN 1)

def factorial(n):
"""Returns: factorial of n
Precondition: n 2 @ an int
1 ifn ==
2 return 1

3 ieturn n*factorial(n-1)

factorial(3)

factorial | |43
3N

factorial | |43
21N

|

factorial | | £ 4
1(n RETURN | 1
| |
factorial | | ZZ
01N RETURN | 1

18



Recursive Call Frames (n==2, finish line 3)

N

3

def factorial(n):
"""Returns: factorial of n
Precondition: n 2 @ an int
if n ==
re‘.!‘jl
return n*factorial(n-1)

factorial(3)

factorial | |43
3N
factorial | |43
21N

factorial

RETURN

factorial | | ZZ

O|n RETURN

19



Recursive Call Frames (n==2, RETURN 6)

def factorial(n): factorial | |43
"""Returns: factorial of n. 3ln
Precondition: n 2 @ an int""" |
1 if n == O: factorial | |42
2 return 1
3 ﬁtur‘n n*factorial(n-1) lz " RETURR 2|
factorial ,,1‘,(

factorial(3)

RETURN | 1

factorial

X

01N RETURN | 1




Recursive Call Frames (n==3, finish line 3)

N

3

def factorial(n):
"""Returns: factorial of n

Precondition: n 2 @ an int
if n ==

re‘.!‘jl
return n*factorial(n-1)

factorial(3)

factorial | |43

3N

factorial %

21N RETURN

7{

factorial

RETURN

factorial | | ZZ

O|n RETURN

21



Recursive Call Frames (n==3, RETURN 6)

def factorial(n):
"""Returns: factorial of n

Precondition: n 2 @ an int
1 ifn ==
2 return 1

3 ieturn n*factorial(n-1)

factorial(3)

factorial | |42

31N RETURN | 6

factorial %

21N RETURN | 2

7{

factorial

factorial | | ZZ

01N RETURN | 1

22



Recursive Call Frames (all calls complete!)

~”

P77

o , RETURN | 6
Precondition: n 2 © an 1int |

if n == O: factorial %

2 return 1 /
3 return n*factorial(n-1) 2|0 RETURN %

7(
| =i
chtor‘lal(fs)

factorial
RETURN | 1

def factorial(n): factorial

Returns: factorial of n.

”

[ERY

factorial

O|n RETURN | 1
|

23



Divide and Conquer

Goal: Solve problem P on a piece of data

data

ldea: Split data into two parts and solve problem

data 1 data 2
' '

Solve Problem P Solve Problem P

G _/
Y

Combine Answer!




From Last Time: Divide and Conquer Example

Watch in the

Count the number of 'e's in a string:
bleljlelwle|l|s| 3

2 |blel]j + wie|l]|s

1 [o]e|=[i]e]r 1[wle|=f
bl==(e]  [ile] |wile
0 1 0 1 0 1



https://pythontutor.com/visualize.html

Example: Palindromes

e Example:

AMANAPLANACANALPANAMA
MOM

A

e Dictionary definition: “a word that reads (spells) the
same backward as forward”

e Can we define recursively?

26



Example: Palindromes

e Strings with <=1 character are palindromes
e String with > 2 characters is a palindrome if:

= jts first and last characters are equal, and
= the rest of the characters form a palindrome

e Example:

r— have to be the same \
A A

has to be a palindrome

 Implement:
def ispalindrome(s):

Returns: True 1if s is a palindrome™™”



Example: Palindromes (1)

Strings with <=1 character are palindromes
String with = 2 characters is a palindrome if:

= jts first and last characters are equal, and
= the rest of the characters form a palindrome

What is the simple case? What is the complex case?
def ispalindrome(s):
"""Returns: True if s 1s a palindrome
if len(s) < 2:
return True

Base case

endsAreSame =
middleIsPalili =
return

28



Example: Palindromes (2)

Strings with <=1 character are palindromes
String with = 2 characters is a palindrome if:

= jts first and last characters are equal, and
= the rest of the characters form a palindrome

What is the simple case? What is the complex case?
def ispalindrome(s):
"""Returns: True if s 1s a palindrome

if len(s) < 2: Base case
return True

Recursive case

endsAreSame = S[0] == s[-1]

middleIsPali = ispalindrome(s[1:-1])
return endsAreSame and middleIsPali

29



Recursion and Objects

e (Class Person, 3 attributes | johnsr. || Pamela Eva Shane | Carmen

" name: String \/ / \/

= parentl: Person (or None) _

John Jr. Jane Portia Ellen

= parent2: Person (or None) N \/

e Represents the “family tree”
John Il Alice
= Goes as far back as known
= Attributes parentl and parent2 \/
are None if not known John IV

e Constructor: Person(name,pl,p2)

id5 id3 1d9

Person Person Person
hame "JOhn Ivll name "Alice" name llshanell
parent1| 1d4 parent1| idl | "°°  parent1|[None

30

parent2| 1id3 parent2| 1d2 parent2|None




Recursion and Objects: Setup

def count_ancestors(p):

Returns:

: num of known anceScon
Pre: p is a Person""" %\\\\///

# 1. Handle base case.

# No parents (no ancestors)

John Sr. Pamela Eva Shane Carmen
John Jr. Jane Portia Ellen

N

# 2. Break into two parts
# Has parentl or parent2

# Count ancestors of each one
# (plus parentl, parent2 themselves)

# 3. Combine the result

John llI

N/

Alice

name

\/

John IV

1d5

11 ancestors

Person

"John IV"

parentl
parent2

id4

id3

31



Recursion and Objects: Implementation

def count_ancestors(p):

John Sr. Pamela Eva Shane || Carmen

"""Returns: num of known anceSco
Pre: p is a Person""" \/ / \/
# 1. Handle base case. P J bort o
# No parents (no ancestors) : ane ortia en
if p.parentl == None and p.parent2 == ;;;EE\\\\\X \\\\N///

return ©
# 2. Break into two parts sl Alice

# Has parentl or parent2 \\\(///////}
# Count ancestors of each one

# (plus parentl, parent2 themselves) John IV

parentls fam = ©

if p.parentl != None: 11anceﬂom
parentls fam = 1 + count_ancestors(p.parentl) ids

parent2s_fam = © Person

if p.parent2 != None: name| "Jane"
parent2s_fam = 1 + count_ancestors(p.parent2) parent1|None

# 3. Combine the result parent2| id3

return parentls fam + parent2s_fam 32



Recursion and Objects: Finishing Touches

def count_ancestors(p):
"""Returns: num of known ancestors

Pre: p is a Person

# 1. Handle base case.
# No parents (no ancestors) We don’t actually

if p.parentl == None and p.parent2 == None:> need this.

return It is handled by the

# 2. Break into two parts conditionals in #2.
# Has parentl or parent2

# Count ancestors of each one

# (plus parentl, parent2 themselves)
parentls fam = 0
if p.parentl != None:
parentls fam = 1 + count_ancestors(p.parentl)
parent2s fam = 0O
if p.parent2 != None:
parent2s fam = 1 + count_ancestors(p.parent2)
# 3. Combine the result 33
return parentls fam + parent2s_ fam



"It Takes a Village" Version: Lots of Parents

def count_ancestors(p):

Returns: num of known ancestors

Pre: p is a Person with attribute parents, a list of parents

# 1. Handle base case. (We decided this wasn't necessary)

# 2. Break into parts 1d9

# For each parent, count ancestors

Person

name "Ming"

# (plus parent, parent2 themselves)

arents
n_ancestors = 0 P

for parent in p.parents:

id3

n_ancestors += (1 + count_ancestors(parent))

# 3. Combine the result : FREE!
return n_ancestors

id5

name

1d3 list
0 id5
1 id6
2| 1idi15

Person

"MingMom"

parents| 1d7

# Notice when you have no parents, you return n_ancestors with the

# value 0. (the parent list is empty so you don't go in the loop) 34



Exercise: Find Ancestors

def list ancestors(p):

"""Returns: list of all ancestors of p"""

# 1. Handle base case.

# 2. Break into parts. [JonnSr || Pamels Eva SIEmR || Cmen

# 3. Combine answer. \/ / \/
John Jr. Jane Portia Ellen

N

N/

John I Alice
John IV

_______________________________________________________________________________________________________________

_______________________________________________________________________________________________________________

35



