
Lecture 14:
More Recursion!

CS 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2022sp

• Slide 34 had a typo! Should be:
for parent in p.parents:

• Slide 30 & 35 now has folders to better
understand the Person class and its attributes

Lecture Afterthoughts

2

Announcements

• Reminder: prelim 1 regrade requests due on
Gradescope Wed 11:59pm
"When you review your prelim, if you believe a grading
error was made, you may request a regrade on
Gradescope until 11:59pm Wed Mar 23. We plan to
handle all the regrade requests in one pass, after the
regrade-request window has closed."

3

Recursion

Recursive Function:
A function that calls itself (directly or indirectly)

Recursive Definition:
A definition that is defined in terms of itself

4

From previous lecture: Factorial

Non-recursive definition:
n! = n× n-1 × … × 2 × 1

= n (n-1 × … × 2 × 1)

Recursive definition:
n! = n (n-1)!
0! = 1

5

for n > 0 Recursive case
Base case

Recursive Call Frames

6

factorial 1

n3

def factorial(n):
"""Returns: factorial of n.
Precondition: n ≥ 0 an int"""
if n == 0:

return 1
return n*factorial(n-1)

factorial(3)

1
2
3

Recursive Call Frames

7

factorial

n3

1, 3def factorial(n):
"""Returns: factorial of n.
Precondition: n ≥ 0 an int"""
if n == 0:

return 1
return n*factorial(n-1)

factorial(3)

1
2
3

Now what?
Each call is a new frame!

def factorial(n):
"""Returns: factorial of n.
Precondition: n ≥ 0 an int"""
if n == 0:

return 1
return n*factorial(n-1)

factorial(3)

A:

What happens next? (Q)

8

factorial 1, 3

n3

factorial 1

n2

factorial 1, 3, 1

n3 2û

B:

factorial 1

n3

C:

factorial 1, 3, 1

n3 2û

D:

factorial 1

n2

ERASE FRAMEfactorial 1, 3

n 3

Recursive Call Frames (n==2, execute line 1)

10

factorial 1, 3

n3

n2

1factorial

def factorial(n):
"""Returns: factorial of n.
Precondition: n ≥ 0 an int"""
if n == 0:

return 1
return n*factorial(n-1)

factorial(3)

1
2
3

Recursive Call Frames (n==2, execute line 3)

11

def factorial(n):
"""Returns: factorial of n.
Precondition: n ≥ 0 an int"""
if n == 0:

return 1
return n*factorial(n-1)

factorial(3)

1
2
3

factorial 1, 3

n3

n2

factorial 1, 3

Recursive Call Frames (n==1, execute line 1)

12

def factorial(n):
"""Returns: factorial of n.
Precondition: n ≥ 0 an int"""
if n == 0:

return 1
return n*factorial(n-1)

factorial(3)

1
2
3

factorial 1, 3

n3

n2

factorial 1, 3

n1

1factorial

Recursive Call Frames (n==1, execute line 3)

13

def factorial(n):
"""Returns: factorial of n.
Precondition: n ≥ 0 an int"""
if n == 0:

return 1
return n*factorial(n-1)

factorial(3)

1
2
3

factorial 1, 3

n3

n2

factorial 1, 3

n1

factorial 1, 3

Recursive Call Frames (n==0, execute line 1)

14

def factorial(n):
"""Returns: factorial of n.
Precondition: n ≥ 0 an int"""
if n == 0:

return 1
return n*factorial(n-1)

factorial(3)

1
2
3

factorial 1, 3

n3

n2

factorial 1, 3

n1

factorial 1, 3

n0

factorial 1

Recursive Call Frames (n==0, execute line 2)

15

def factorial(n):
"""Returns: factorial of n.
Precondition: n ≥ 0 an int"""
if n == 0:

return 1
return n*factorial(n-1)

factorial(3)

1
2
3

factorial 1, 3

n3

n2

factorial 1, 3

n1

factorial 1, 3

n0

factorial 1, 2

def factorial(n):
"""Returns: factorial of n.
Precondition: n ≥ 0 an int"""
if n == 0:

return 1
return n*factorial(n-1)

factorial(3)

Recursive Call Frames (n==0, RETURN 1)

16

1
2
3

factorial 1, 3

n3

n2

factorial 1, 3

n1

factorial 1, 3

n0

factorial 1, 2

RETURN 1

def factorial(n):
"""Returns: factorial of n.
Precondition: n ≥ 0 an int"""
if n == 0:

return 1
return n*factorial(n-1)

factorial(3)

Recursive Call Frames (n==1, finish line 3)

17

1
2
3

factorial 1, 3

n3

n2

factorial 1, 3

n1

factorial 1, 3

n0

factorial 1, 2

RETURN 1

def factorial(n):
"""Returns: factorial of n.
Precondition: n ≥ 0 an int"""
if n == 0:

return 1
return n*factorial(n-1)

factorial(3)

Recursive Call Frames (n==1, RETURN 1)

18

1
2
3

factorial 1, 3

n3

n2

factorial 1, 3

n1

factorial 1, 3

n0

factorial 1, 2

RETURN 1

RETURN 1

def factorial(n):
"""Returns: factorial of n.
Precondition: n ≥ 0 an int"""
if n == 0:

return 1
return n*factorial(n-1)

factorial(3)

Recursive Call Frames (n==2, finish line 3)

19

1
2
3

factorial 1, 3

n3

n2

factorial 1, 3

n1

factorial 1, 3

n0

factorial 1, 2

RETURN 1

RETURN 1

def factorial(n):
"""Returns: factorial of n.
Precondition: n ≥ 0 an int"""
if n == 0:

return 1
return n*factorial(n-1)

factorial(3)

Recursive Call Frames (n==2, RETURN 6)

20

1
2
3

factorial 1, 3

n3

n2

factorial 1, 3

n1

factorial 1, 3

n0

factorial 1, 2

RETURN 1

RETURN 1

RETURN 2

def factorial(n):
"""Returns: factorial of n.
Precondition: n ≥ 0 an int"""
if n == 0:

return 1
return n*factorial(n-1)

factorial(3)

Recursive Call Frames (n==3, finish line 3)

21

1
2
3

factorial 1, 3

n3

n2

factorial 1, 3

n1

factorial 1, 3

n0

factorial 1, 2

RETURN 1

RETURN 1

RETURN 2

def factorial(n):
"""Returns: factorial of n.
Precondition: n ≥ 0 an int"""
if n == 0:

return 1
return n*factorial(n-1)

factorial(3)

Recursive Call Frames (n==3, RETURN 6)

22

1
2
3

factorial 1, 3

n3

n2

factorial 1, 3

n1

factorial 1, 3

n0

factorial 1, 2

RETURN 1

RETURN 1

RETURN 2

RETURN 6

def factorial(n):
"""Returns: factorial of n.
Precondition: n ≥ 0 an int"""
if n == 0:

return 1
return n*factorial(n-1)

factorial(3)

Recursive Call Frames (all calls complete!)

23

1
2
3

factorial 1, 3

n3

n2

factorial 1, 3

n1

factorial 1, 3

n0

factorial 1, 2

RETURN 1

RETURN 1

RETURN 2

RETURN 6

Divide and Conquer

Goal: Solve problem P on a piece of data

24

data
Idea: Split data into two parts and solve problem

data 1 data 2

Solve Problem P Solve Problem P

Combine Answer!

From Last Time: Divide and Conquer Example

Count the number of 'e's in a string:

25

j e ew l sb e

j eb e ew l s

j eb e ew l s

b e j e ew l s

0 1 0 1 0 1 0 0

1

2

1 0

1

3

1

Watch in the
Python Tutor

• Example:
AMANAPLANACANALPANAMA

MOM

A

• Dictionary definition: “a word that reads (spells) the
same backward as forward”

• Can we define recursively?

Example: Palindromes

26

have to be the same

Example: Palindromes

has to be a palindrome

27

• Strings with <= 1 character are palindromes
• String with ≥ 2 characters is a palindrome if:
§ its first and last characters are equal, and
§ the rest of the characters form a palindrome

• Example:

AMANAPLANACANALPANAMA

• Implement:
def ispalindrome(s):
"""Returns: True if s is a palindrome"""

Example: Palindromes (1)

Strings with <= 1 character are palindromes
String with ≥ 2 characters is a palindrome if:
§ its first and last characters are equal, and
§ the rest of the characters form a palindrome

What is the simple case? What is the complex case?
def ispalindrome(s):

endsAreSame = _______________________
middleIsPali = ________________________
return _________________________

28

if len(s) < 2:
return True

"""Returns: True if s is a palindrome"""

Base case

Recurs
ive

Definit
ion!

Example: Palindromes (2)

Strings with <= 1 character are palindromes
String with ≥ 2 characters is a palindrome if:
§ its first and last characters are equal, and
§ the rest of the characters form a palindrome

What is the simple case? What is the complex case?
def ispalindrome(s):

endsAreSame =
middleIsPali =
return

29

if len(s) < 2:
return True

"""Returns: True if s is a palindrome"""
Base case

Recurs
ive

Definit
ion!

endsAreSame and middleIsPali

s[0] == s[-1]
ispalindrome(s[1:-1])

Recursive case

Recursion and Objects

• Class Person, 3 attributes
§ name: String
§ parent1: Person (or None)
§ parent2: Person (or None)

• Represents the “family tree”
§ Goes as far back as known
§ Attributes parent1 and parent2

are None if not known

• Constructor: Person(name,p1,p2)

30

John Sr. Pamela Eva Shane Carmen

John Jr. Jane Portia Ellen

John III Alice

John IV

id5

name

parent1

"John IV"

id4

id3

Person

parent2

id3

name

parent1

"Alice"

id1

id2

Person

parent2

id9

name

parent1

"Shane"

None

None

Person

parent2

. . .

Recursion and Objects: Setup
def count_ancestors(p):

"""Returns: num of known ancestors

Pre: p is a Person"""
1. Handle base case.
No parents (no ancestors)

2. Break into two parts
Has parent1 or parent2
Count ancestors of each one

(plus parent1, parent2 themselves)

3. Combine the result 31

11 ancestors

John Sr. Pamela Eva Shane Carmen

John Jr. Jane Portia Ellen

John III Alice

John IV

id5

name

parent1

"John IV"

id4

id3

Person

parent2

Recursion and Objects: Implementation
def count_ancestors(p):

"""Returns: num of known ancestors

Pre: p is a Person"""
1. Handle base case.
No parents (no ancestors)

2. Break into two parts
Has parent1 or parent2
Count ancestors of each one

(plus parent1, parent2 themselves)

3. Combine the result
32

11 ancestors

John Sr. Pamela Eva Shane Carmen

John Jr. Jane Portia Ellen

John III Alice

John IV

if p.parent1 == None and p.parent2 == None:
return 0

parent1s_fam = 0
if p.parent1 != None:

parent1s_fam = 1 + count_ancestors(p.parent1)
parent2s_fam = 0
if p.parent2 != None:

parent2s_fam = 1 + count_ancestors(p.parent2)

return parent1s_fam + parent2s_fam

id8

name

parent1

"Jane"
None

id3

Person

parent2

Recursion and Objects: Finishing Touches
def count_ancestors(p):

"""Returns: num of known ancestors

Pre: p is a Person"""
1. Handle base case.
No parents (no ancestors)

2. Break into two parts
Has parent1 or parent2
Count ancestors of each one

(plus parent1, parent2 themselves)

3. Combine the result 33

if p.parent1 == None and p.parent2 == None:
return 0

parent1s_fam = 0
if p.parent1 != None:

parent1s_fam = 1 + count_ancestors(p.parent1)
parent2s_fam = 0
if p.parent2 != None:

parent2s_fam = 1 + count_ancestors(p.parent2)

return parent1s_fam + parent2s_fam

We don’t actually
need this.
It is handled by the
conditionals in #2.

"It Takes a Village" Version: Lots of Parents
def count_ancestors(p):

"""Returns: num of known ancestors

Pre: p is a Person with attribute parents, a list of parents """
1. Handle base case. (We decided this wasn't necessary)

2. Break into parts
For each parent, count ancestors

(plus parent, parent2 themselves)

n_ancestors = 0
for parent in p.parents:

n_ancestors += (1 + count_ancestors(parent))

3. Combine the result : FREE!

return n_ancestors

Notice when you have no parents, you return n_ancestors with the

value 0. (the parent list is empty so you don't go in the loop) 34

id9

name

parents

"Ming"

id3

Person
id3

0 id5

list

1 id6

2 id15

id5

name

parents

"MingMom"

id7

Person

Exercise: Find Ancestors

def list_ancestors(p):
"""Returns: list of all ancestors of p"""

1. Handle base case.

2. Break into parts.

3. Combine answer.

35Optional practice question. Try it after you complete this week’s lab exercise.

John Sr. Pamela Eva Shane Carmen

John Jr. Jane Portia Ellen

John III Alice

John IV

