Lecture 14:
More Recursion!

CS 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]

Announcements

e Reminder: prelim 1 regrade requests due on
Gradescope Wed 11:59pm

"When you review your prelim, if you believe a grading
error was made, you may request a regrade on
Gradescope until 11:59pm Wed Mar 23. We plan to
handle all the regrade requests in one pass, after the
regrade-request window has closed."

From previous lecture: Factorial

Non-recursive definition:
nl=nXnlX. X2X1
=n(n-1 X ... X2 X 1)

Recursive definition:
n!'=n(n-1)! forn>0 Recursive case

ol=1 Base case

Lecture Aftertho

e Slide 34 had a typo! Should be:
for parent in p.parents:

e Slide 30 & 35 now has folders to better
understand the Person class and its attributes

Recursion

Recursive Function:
A function that calls itself (directly or indirectly)

Recursive Definition:
A definition that is defined in terms of itself

Recursive Call Frames

def factorial(n): ‘-Factorial ‘ ‘ 1

Retur.‘n?: factorial of n n

HPr*econdltlon: n 2 0 an int
if n == 0:

2 return 1
3 return n*factorial(n-1)

factorial(3)

Recursive Call Frames

def factorial(n):
"""Returns: factorial of n.
Precondition: n > @ an int"""

1 ifn-==o:
return 1

ﬁ 'return n*factorial(n-1)

factorial(3)

‘factorial ‘ ‘zﬂs

BE

Now what?

Each call is a new frame!

Recursive Call Frames (n==2, execute line 1)

def factorial(n):
"""Returns: factorial of n.
recondition: n 2 @ an int"""
T5Vie n == o:
2 return 1
3 return n*factorial(n-1)

factorial(3)

factorial ‘ ‘,Z, 3

3|n

factorial‘ ‘ 1

2]n

10

Recursive Call Frames (n==1, execute line 1)

def factorial(n):
"""Returns: factorial of n.
recondition: n 2 @ an int"""
T5Vie n == o:
2 return 1
3 return n*factorial(n-1)

factorial(3)

factor‘ial‘ ‘,1,3
3|n
factorial | |43
2|n

factorial‘ ‘ 1

[3]r

12

What happens next? (Q)

def factorial(n): A: B:
"""Returns: factorial d
Precondition: n > @ an factorial ‘ ‘1,3 ‘factor‘ial ‘ V,Zl
if n == 0:
return 1 En n
-r‘etur‘n n*factorial(n-1)

factorial‘ ‘

factorial(3)

[2]n

factorial \ﬁ C:

ERASE FRAME

o]

factorial‘ ‘

[3]n

1
D:
‘-Factor'ial ‘ X1
.
1 ‘factorial ‘ ‘ 1
:

Recursive Call Frames (n==2, execute line 3)

def factorial(n):

Returns: factorial of n.
Precondition: n 2 @ an int"""

1 ifn-==o:
return 1

ﬁ 'return n*factorial(n-1)

factorial(3)

factor‘ial‘ ‘,1,3
3|n
factorial | |43
2|n

11

Recursive Call Frames (n==1, execute line 3)

def factorial(n):

Returns: factorial of n.
Precondition: n 2 @ an int"""

1 ifn-==oe:
return 1

ﬁ 'return n*factorial(n-1)

factorial(3)

factor‘ial‘ ‘,1,3
3|n

factorial | |43
2|n

factorial H,Z, 3

[3]r

13

Recursive Call Frames (n==0, execute line 1)

Recursive Call Frames (n==0, execute line 2)

def factorial(n):

"""Returns: factorial of n.
recondition: n

T5Vie n == o:

2 return 1

3 return n*factorial(n-1)

factorial(3)

> @ an int"""

factor‘ial‘ ‘,1,3
3|n

factorial | |43
2|n

factorial ﬂ,&', 3

[3]r

factorial (4} 1

of

Recursive Call Frames (n==0, RETURN 1)

1

2
3

14

def factorial(n):

"""Returns: factorial of n.

Precondition: n
== 0:

ifyn
-r‘etur‘n 1

return n*factorial(n-1)

factorial(3)

> 0@ an int"""

factor‘ial‘ ‘,1,3
3|n

factorial | |43
2|n

factorial ﬂ,&', 3
1in

factorial{AW;Zz

of

15

Recursive Call Frames (n==1, finish line 3)

def factorial(n):
"""Returns:
Precondition: n

1 ifn-==oe:
2 #‘etur‘n 1
3 return n*factorial(n-1)

factorial(3)

factorial of n.
> 0@ an int"""

factor‘ial‘ ‘,1,3
3|n
factorial | |43
2|n

factorial ﬂ,&', 3

Recursive Call Frames (n==1, RETURN 1)

16

def factorial(n):
"""Returns:
Precondition: n
1 ifn-==o0:
2 return 1

3 ieturn n*factorial(n-1)

factorial(3)

factorial of n.
> 0@ an int"""

factorial ‘ ‘,Z, 3

3|n
factorial | |43

def factorial(n):
"""Returns: factorial of n.
Precondition: n
if n == @:

re 1
return n*factorial(n-1)

factorial(3)

> 0@ an int"""

factor‘ial‘ ‘,1,3
3|n
factorial | |43
2|n

factorial ﬂ,&', 3

Recursive Call Frames (n==2, finish line 3)

def factorial(n):

Returns:
Precondition: n

1 ifn-==o0:
2 re 1
3 return n*factorial(n-1)

factorial(3)

factorial of n.
> 0@ an int"""

factorial ‘ ‘,Z, 3

3|n
factorial | |43

2|n
factorial ;?5

~

1 ?i RETURN | 1

Recursive Call Frames (n==2, RETURN 6) Recursive Call Frames (n==3, finish line 3)

def factorial(n): factorial ‘ ‘,Z, 3 def factorial(n): factorial ‘ ‘,Z, 3
"""Returns: factorial of n. - """Returns: factorial of n. -
Precondition: n 2 @ an int""" [;j Precondition: n 2 @ an int""" [;j

1 if n == 0: 1 if n == 0:

2 return 1 2 re 1
3 ieturn n*factorial(n-1) 3 return n*factorial(n-1)

factorial ;E% factorial ;E%
factorial(3)

factorial(3)
1 ?i RETURN | 1 1 ?i RETURN | 1

Recursive Call Frames (n==3, RETURN 6) Recursive Call Frames (all calls complete!)

def factorial(n):
"""Returns: factorial of n.

def factorial(n): factorial

Precondition: n 2 @ an int"""
1 ifn==oe:
2 return 1
3 stur‘n n*factorial(n-1)

"""Returns: factorial of n.
iti i {3 RETURN | 6
Precondition: n 2 @ an int"""

1 ifn-==o:
2 return 1

3 return n*factorial(n-1)

factorial ;E% factorial ;E%

factorial(3) iactorial(B)
1 ?i RETURN | 1 1 ?i RETURN | 1

Divide and Conquer From Last Time: Divide and Conquer Example
Goal: Solve problem P on a piece of data Count the number of 'e'sin a string: [\watch in the
v bleli[e[wlel1]s] :
Idea: Split data into two parts and solve problem) |b | e| i |e| + |W|e| | | S | 1
data 1 data 2
S —— 1 |ble|=f=[ile]1 1 [wle]4=[1]s] 0

Solve Problem P Solve Problem P

v [oJe] [ilHe] [widrle] [H(s]

Combine Answer!
2 0 1 0 1 0 1 0 0 =

Example: Palindromes

Example: Palindromes

e Example:

AMANAPLANACANALPANAMA
MOM

A

e Dictionary definition: “a word that reads (spells) the
same backward as forward”

 Can we define recursively? »

Example: Palindromes (1)

Strings with <=1 character are palindromes

String with > 2 characters is a palindrome if:
= jts first and last characters are equal, and
= the rest of the characters form a palindrome

¢ Example‘:/— have to be the same \’
A A

has to be a palindrome

¢ Implement:
def ispalindrome(s):

Returns: True if s is a palindrome""”

Example: Palindromes (2)

Strings with <=1 character are palindromes
String with > 2 characters is a palindrome if:
= jts first and last characters are equal, and Recursi\’e

What is the simple case? What is the complex case?
def ispalindrome(s):
"""Returns: True if s is a palindrome
if len(s) < 2:
return True

endsAreSame =
middleIsPali =
return

28

Recursion and Objects

Strings with <=1 character are palindromes

String with > 2 characters is a palindrome if:
= jts first and last characters are equal, and Recursi\’e

What is the simple case? What is the complex case?
def ispalindrome(s):
"""Returns: True if s is a palindrome

if len(s) < 2:

return True
endsAreSame = S[0] == s[-1]
middleIsPali = ispalindrome(s[1:-1])
return endsAreSame and middleIsPali

29

Recursion and Objects: Setup

e Class Person, 3 attributes | John Sr. " Pamelal | Eva | | Shane || Carmen‘

= name: String

= parentl: Person (or None)

|Jothr.| | Jane | | Portia || Ellen |

= parent2: Person (or None)

¢ Represents the “family tree”

John Il

= Goes as far back as known
= Attributes parentl and parent2
are None if not known

e Constructor: Person(name, pl,p2)

103 1d3 109
name name ["Alice” name
parentl parentl par‘entl

parentz par‘entz parentz *

def count_ancestors(p):
- J John Sr. " Pamelal | Eva | | Shane || Carmen‘
"""Returns: num of known ance T
Pre: p is a Person""" \/ / \/
1. Handle base case.
|Jothr.| | Jane | | Portia || Ellen |

No parents (no ancestors)

John Il

2. Break into two parts
Has parentl or parent2

Count ancestors of each one
(plus parentl, parent2 themselves)

/

11 ancestors
14
name _"john V"
par‘entl
parent2[id3 | *

i

3. Combine the result

Recursion and Objects: Implementation

def

count_ancestors(p):

- J John Sr. " Pamelal | Eva | | Shane || Carmen‘
"""Returns: num of known ance T
Pre: p is a Person""" \/ / \/

1. Handle base case.

John Jr. | | | | i || |
No parents (no ancestors) | ang ROt Elm

if p.parentl == None and p.parent2 == None>
return @

John il

2. Break into two parts
Has parentl or parent2
Count ancestors of each one
(plus parentl, parent2 themselves)
parentls_fam = ©
if p.parentl != None:
parentls_fam = 1 + count_ancestors(p.parentl) id
parent2s_fam = © &
if p.parent2 != None: name["Jane" |
parent2s_fam = 1 + count_ancestors(p.parent2) parent1[None]

3. Combine the result parent2[id3 | »

return parentls_fam + parent2s_fam

John IV

11 ancestors

"It Takes a Village" Version: Lots of Parents

def

count_ancestors(p):

Returns: num of known ancestors
Pre: p is a Person with attribute parents, a list of parents """
1. Handle base case. (We decided this wasn't necessary)

id9 Person id3
parents

o[1ids
1[ids |
2[idi5]

2. Break into parts
For each parent, count ancestors

(plus parent, parent2 themselves)

n_ancestors = 0
for parent in p.parents:

n_ancestors += (1 + count_ancestors(parent)) ids
name ["MingMom']
parents [id7]

3. Combine the result : FREE!
return n_ancestors

Notice when you have no parents, you return n_ancestors with the
value 0. (the parent list is empty so you don't go in the loop) 34

Recursion and Objects: Finishing Touches

def count_ancestors(p):

Returns: num of known ancestors

Pre: p is a Person
1. Handle base case.
No parents (no ancestors)

We don’t actually
if p.parentl == None and p.parent2 == None:} need this.
return @ It is handled by the

2. Break into two parts e :
Has parentl or parent2 conditionals in #2.
Count ancestors of each one
(plus parentl, parent2 themselves)
parentls_fam = ©
if p.parentl != None:
parentls_fam = 1 + count_ancestors(p.parentl)
parent2s_fam = ©
if p.parent2 != None:
parent2s_fam = 1 + count_ancestors(p.parent2)
3. Combine the result 33
return parentls_fam + parent2s_fam

Exercise: Find Ancestors

def list_ancestors(p):

Returns: list of all ancestors of p
1. Handle base case.

2. Break into parts. |J°h”s" " Pame'al | B2 | | Shale || Ca'menl

3. Combine answer.

|Jothr.| | Jane | | Portia || Ellen |

John IV

| Optional practice question. Try it after you complete this week’s lab exercise. 3

35

