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Announcements (1/2)

• A3: not allowed to use use dict method update()
• Prelim 1 grades: read the grade centers 

email/see announcement
• Gauging interest on (Ed Discussions) in catch-

up/subject-review sessions:
§ https://edstem.org/us/courses/19140/discussion/1

290339
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https://edstem.org/us/courses/19140/discussion/1290339


Announcements (2/2)

Want more practice with for loops? 
• posted codingbat to course homepage (4.F = 

under "help, advice"), many easy-to-hard 
problems

• for thing in list vs for in in range(len(...)):
§ https://edstem.org/us/courses/19140/discussion/1

289599

• Extra optional exercises added to the lab 11 
frontpage: loop_practice.py, loop_practice_test.
py, cornellasserts.py 4

https://edstem.org/us/courses/19140/discussion/1289599
https://cs1110.cs.cornell.edu/py/labs/cs1110/lab11
https://cs1110.cs.cornell.edu/files/cs1110sp22/lab11/loop_practice.py
https://cs1110.cs.cornell.edu/files/cs1110sp22/lab11/loop_practice_test.py
https://cs1110.cs.cornell.edu/files/cs1110sp22/lab11/cornellasserts.py


Recursion

5

• Not new python, but a new way of organizing 
thinking/algorithm

• Important in CS—CS majors will see it in action 
all 4 years

• Introduction only in CS1110, over 2 lectures
1. Intro, examples, “divide & conquer”
2. Visualization, different ways to “divide”, + objects 

• Hard work on understanding call frames and the 
call stack will now pay off!



Recursive Function: 
A function that calls itself

An example in mathematics:  factorial
• Non-recursive definition:

n! = n × n-1 × … × 2 × 1  

• Recursive definition:
n! = n (n-1)!
0! = 1

Recursion
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(n-1)!

Details in pre-
lecture videos



Recursion

Recursive Function: 
A function that calls itself

Two parts to every recursive function:
1. A simple case: can be solved easily
2. A complex case: can be made simpler (and simpler, 

and simpler… until it looks like the simple case)
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Russian Dolls!
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Think about opening a set of Russian 
dolls as a “problem.”  Which is the 
simpler case,

the case where the doll has a seam and 
another doll inside of it, or

the case where the doll has no seam 
and no doll inside of it?
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Russian Dolls!

import russian
d1 = russian.Doll("Dmitry", None)
d2 = russian.Doll("Catherine", d1)

id1

name

hasSeam

"Dmitry"

False

None

Doll

innerDoll

id1d1

Heap  Space Global  Space 

id2

name

hasSeam

"Catherine"

True

id1

Doll

innerDoll

id2d2"Dmitry"

"Catherine"



def open_doll(d):
"""Input: a Russian Doll
Opens the Russian Doll d """
print("My name is "+ d.name)
if d.hasSeam:

# open inner doll
open_doll2(d.innerDoll)

else:
print("That's it!")

idx

name
hasSeam

Doll

innerDoll

What would this 

function look 

like?



def open_doll2(d):
"""Input: a Russian Doll
Opens the Russian Doll d """
print("My name is "+ d.name)
if d.hasSeam:

# open inner doll
open_doll3(d.innerDoll)

else:
print("That's it!")

What would this 

function look 

like?

idx

name
hasSeam

Doll

innerDoll



def open_doll3(d):
"""Input: a Russian Doll
Opens the Russian Doll d """
print("My name is "+ d.name)
if d.hasSeam:

# open inner doll
open_doll4(d.innerDoll)

else:
print("That's it!")

This function 

should look just 

like the others!

idx

name
hasSeam

Doll

innerDoll



def open_doll(d):
"""Input: a Russian Doll
Opens the Russian Doll d """
print("My name is "+ d.name)
if d.hasSeam:

inner = d.innerDoll
open_doll(inner)

else:
print("That's it!")

idx

name
hasSeam

Doll

innerDoll



Play with the code

• Download modules russian.py, playWithDolls.py
• Read playWithDolls.py; then run it as a script.
• Modify last statement and run script again:

§ open_doll(d3)

• Modify last statement again and run script again :
§ open_doll(d1)

• Do you understand the result?
• Use Python Tutor to visualize (more next lecture)
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Recursion:  Examples

• Russian Dolls
• Blast Off!
• Factorial
• Count number of ‘e’s
• Deblank – removing spaces from a string
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blast_off(5) # non-negative int
5
4
3
2
1
BLAST OFF!

blast_off(0)
BLAST OFF!
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Blast Off!



blast_off(5) # non-negative int
5
4
3
2
1
BLAST OFF!

blast_off(0)
BLAST OFF!
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Blast Off!

What is the simple case 
that can be solved easily?

• positive n > 1 
• n is 1
• n is 0



def blast_off(n):
"""Input: a non-negative int
Counts down from n to Blast-Off! 
"""
if (n == 0):

print("BLAST OFF!")
else:

print(n)
blast_off(n-1)
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Blast Off!



A Mathematical Example: Factorial

• Non-recursive definition:
n! = n× n-1 × … × 2 × 1  

= n (n-1 × … × 2 × 1)

• Recursive definition:
n! = n (n-1)!
0! = 1
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for n > 0 Recursive case
Base case

Details in pre-
lecture videos



Factorial as a Recursive Function

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

• n! = n (n-1)!
• 0! = 1
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What happens if there is no base case?

Recursive case

Base case(s)



Recursion vs Iteration

• Recursion is provably equivalent to iteration
§ Iteration includes for-loop and while-loop (later)
§ Anything can do in one, can do in the other

• But some things are easier with recursion
§ And some things are easier with iteration

• Will not teach you when to choose recursion
§ That’s for upper level courses

• We just want you to understand the technique
24



Recursion is great for Divide and Conquer

Goal: Solve problem P on a piece of data

26

data



Recursion is great for Divide and Conquer

Goal: Solve problem P on a piece of data

27

data
Idea: Split data into two parts and solve problem

data 1 data 2

Solve Problem P Solve Problem P



Recursion is great for Divide and Conquer

Goal: Solve problem P on a piece of data
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data
Idea: Split data into two parts and solve problem

data 1 data 2

Solve Problem P Solve Problem P

Combine Answer!



Divide and Conquer Example

Count the number of 'e's in a string:
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j e ew l sb e

j eb e ew l s

j eb e ew l s

b e j e ew l s

0 1 0 1 0 1 0 0

1

2

1 0

1

3

1



Divide and Conquer Example

Count the number of 'e's in a string:
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j e ew l

ej ew l0

2

e ew l1

ew l

e l

0

1 0

1

1

2

Will talk about how 
to break-up later



Divide and Conquer

Goal: Solve really big problem P
Idea: Split into simpler problems, solve, combine

3 Steps:
1. Decide what to do for simple cases
2. Decide how to break up the task
3. Decide how to combine your work
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Three Steps for Divide and Conquer

1. Decide what to do on “small” data
§ Some data cannot be broken up
§ Have to compute this answer directly

2. Decide how to break up your data
§ Both “halves” should be smaller than whole
§ Often no wrong way to do this (next lecture)

3. Decide how to combine your answers
§ Assume the smaller answers are correct
§ Combine them to give the aggregate answer
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Divide and Conquer Example

def num_es(s):
"""Returns: # of 'e's in s"""
# 1. Handle small data

# 2. Break into two parts

# 3. Combine the result

34



Divide and Conquer Example

def num_es(s):
"""Returns: # of 'e's in s"""
# 1. Handle small data
if s == '':

return 0
elif len(s) == 1:

return 1 if s[0] == 'e' else 0

# 2. Break into two parts
left = num_es(s[0])
right = num_es(s[1:])

# 3. Combine the result
return left+right
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Divide and Conquer Example

def num_es(s):
"""Returns: # of 'e's in s"""
# 1. Handle small data
if s == '':

return 0
elif len(s) == 1:

return 1 if s[0] == 'e' else 0

# 2. Break into two parts
left = num_es(s[0])
right = num_es(s[1:])

# 3. Combine the result
return left+right
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“Short-cut” for
if s[0]=='e’:

return 1
else:

return 0



Divide and Conquer Example

def num_es(s):
"""Returns: # of 'e's in s"""
# 1. Handle small data
if s == '':

return 0
elif len(s) == 1:

return 1 if s[0] == 'e' else 0

# 2. Break into two parts
left = num_es(s[0])
right = num_es(s[1:])

# 3. Combine the result
return left+right
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p e nn e

0 2

s[0] s[1:]



Divide and Conquer Example

def num_es(s):
"""Returns: # of 'e's in s"""
# 1. Handle small data
if s == '':

return 0
elif len(s) == 1:

return 1 if s[0] == 'e' else 0

# 2. Break into two parts
left = num_es(s[0])
right = num_es(s[1:])

# 3. Combine the result
return left+right
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p e nn e

0 2+

s[0] s[1:]



Divide and Conquer Example

def num_es(s):
"""Returns: # of 'e's in s"""
# 1. Handle small data
if s == '':

return 0
elif len(s) == 1:

return 1 if s[0] == 'e' else 0

# 2. Break into two parts
left = num_es(s[0])
right = num_es(s[1:])

# 3. Combine the result
return left+right
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Base 
Case

Recursive
Case



Exercise: Remove Blanks from a String

def deblank(s):
"""Returns: s but with its blanks removed"""

1. Decide what to do on “small” data
§ If it is the empty string, nothing to do

if s == '':
return s

§ If it is a single character, delete it if a blank
if s == ' ':   # There is a space here

return '' # Empty string
else:

return s
40



Exercise: Remove Blanks from a String

def deblank(s):
"""Returns: s but with its blanks removed"""

2. Decide how to break it up
left = deblank(s[0])   # str w/o blanks
right = deblank(s[1:]) # str w/o blanks

3. Decide how to combine the answers
return left+right # str concatenation
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Putting it All Together

def deblank(s):
"""Returns: s w/o blanks"""
if s == '':

return s
elif len(s) == 1:

return '' if s[0] == ' ' else s

left = deblank(s[0])
right = deblank(s[1:])

return left + right

42

Handle 
small 
data

Break up the data

Combine answers



Putting it All Together

def deblank(s):
"""Returns: s w/o blanks"""
if s == '':

return s
elif len(s) == 1:

return '' if s[0] == ' ' else s

left = deblank(s[0])
right = deblank(s[1:])

return left+right
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Base 
Case

Recursive
Case



Following the Recursion

a b cdeblank
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deblank a b cdeblank

stop (base case)
adeblank

stop (base case)

b cdeblank

…

You really, really, really want to visualize a call of deblank using Python Tutor.  Pay attention to 
the recursive calls (call frames opening up), the completion of a call (sending the result to the call 
frame “above”), and the resulting accumulation of the answer.



Post-lecture exercise

• Visualize a call of deblank using Python Tutor
• Code in file deblank.py
• Pay attention to 

§ the recursive calls (call frames opening up), 
§ the completion of a call (sending the result to the 

call frame “above”), 
§ and the resulting accumulation of the answer.

• Do this exercise before next lecture.  Really!
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