
Lecture 13:
Recursion
(Sections 5.8-5.10)

CS 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2022sp

http://www.cs.cornell.edu/courses/cs1110/2022sp

Announcements (1/2)

• A3: not allowed to use use dict method update()
• Prelim 1 grades: read the grade centers

email/see announcement
• Gauging interest on (Ed Discussions) in catch-

up/subject-review sessions:
§ https://edstem.org/us/courses/19140/discussion/1

290339

3

https://edstem.org/us/courses/19140/discussion/1290339

Announcements (2/2)

Want more practice with for loops?
• posted codingbat to course homepage (4.F =

under "help, advice"), many easy-to-hard
problems

• for thing in list vs for in in range(len(...)):
§ https://edstem.org/us/courses/19140/discussion/1

289599

• Extra optional exercises added to the lab 11
frontpage: loop_practice.py, loop_practice_test.
py, cornellasserts.py 4

https://edstem.org/us/courses/19140/discussion/1289599
https://cs1110.cs.cornell.edu/py/labs/cs1110/lab11
https://cs1110.cs.cornell.edu/files/cs1110sp22/lab11/loop_practice.py
https://cs1110.cs.cornell.edu/files/cs1110sp22/lab11/loop_practice_test.py
https://cs1110.cs.cornell.edu/files/cs1110sp22/lab11/cornellasserts.py

Recursion

5

• Not new python, but a new way of organizing
thinking/algorithm

• Important in CS—CS majors will see it in action
all 4 years

• Introduction only in CS1110, over 2 lectures
1. Intro, examples, “divide & conquer”
2. Visualization, different ways to “divide”, + objects

• Hard work on understanding call frames and the
call stack will now pay off!

Recursive Function:
A function that calls itself

An example in mathematics: factorial
• Non-recursive definition:

n! = n × n-1 × … × 2 × 1

• Recursive definition:
n! = n (n-1)!
0! = 1

Recursion

6

(n-1)!

Details in pre-
lecture videos

Recursion

Recursive Function:
A function that calls itself

Two parts to every recursive function:
1. A simple case: can be solved easily
2. A complex case: can be made simpler (and simpler,

and simpler… until it looks like the simple case)

7

8

Russian Dolls!

9

Think about opening a set of Russian
dolls as a “problem.” Which is the
simpler case,

the case where the doll has a seam and
another doll inside of it, or

the case where the doll has no seam
and no doll inside of it?

10

Russian Dolls!

import russian
d1 = russian.Doll("Dmitry", None)
d2 = russian.Doll("Catherine", d1)

id1

name

hasSeam

"Dmitry"

False

None

Doll

innerDoll

id1d1

Heap Space Global Space

id2

name

hasSeam

"Catherine"

True

id1

Doll

innerDoll

id2d2"Dmitry"

"Catherine"

def open_doll(d):
"""Input: a Russian Doll
Opens the Russian Doll d """
print("My name is "+ d.name)
if d.hasSeam:

open inner doll
open_doll2(d.innerDoll)

else:
print("That's it!")

idx

name
hasSeam

Doll

innerDoll

What would this

function look

like?

def open_doll2(d):
"""Input: a Russian Doll
Opens the Russian Doll d """
print("My name is "+ d.name)
if d.hasSeam:

open inner doll
open_doll3(d.innerDoll)

else:
print("That's it!")

What would this

function look

like?

idx

name
hasSeam

Doll

innerDoll

def open_doll3(d):
"""Input: a Russian Doll
Opens the Russian Doll d """
print("My name is "+ d.name)
if d.hasSeam:

open inner doll
open_doll4(d.innerDoll)

else:
print("That's it!")

This function

should look just

like the others!

idx

name
hasSeam

Doll

innerDoll

def open_doll(d):
"""Input: a Russian Doll
Opens the Russian Doll d """
print("My name is "+ d.name)
if d.hasSeam:

inner = d.innerDoll
open_doll(inner)

else:
print("That's it!")

idx

name
hasSeam

Doll

innerDoll

Play with the code

• Download modules russian.py, playWithDolls.py
• Read playWithDolls.py; then run it as a script.
• Modify last statement and run script again:

§ open_doll(d3)

• Modify last statement again and run script again :
§ open_doll(d1)

• Do you understand the result?
• Use Python Tutor to visualize (more next lecture)

16

Recursion: Examples

• Russian Dolls
• Blast Off!
• Factorial
• Count number of ‘e’s
• Deblank – removing spaces from a string

18

blast_off(5) # non-negative int
5
4
3
2
1
BLAST OFF!

blast_off(0)
BLAST OFF!

19

Blast Off!

blast_off(5) # non-negative int
5
4
3
2
1
BLAST OFF!

blast_off(0)
BLAST OFF!

20

Blast Off!

What is the simple case
that can be solved easily?

• positive n > 1
• n is 1
• n is 0

def blast_off(n):
"""Input: a non-negative int
Counts down from n to Blast-Off!
"""
if (n == 0):

print("BLAST OFF!")
else:

print(n)
blast_off(n-1)

21

Blast Off!

A Mathematical Example: Factorial

• Non-recursive definition:
n! = n× n-1 × … × 2 × 1

= n (n-1 × … × 2 × 1)

• Recursive definition:
n! = n (n-1)!
0! = 1

22

for n > 0 Recursive case
Base case

Details in pre-
lecture videos

Factorial as a Recursive Function

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

• n! = n (n-1)!
• 0! = 1

23

What happens if there is no base case?

Recursive case

Base case(s)

Recursion vs Iteration

• Recursion is provably equivalent to iteration
§ Iteration includes for-loop and while-loop (later)
§ Anything can do in one, can do in the other

• But some things are easier with recursion
§ And some things are easier with iteration

• Will not teach you when to choose recursion
§ That’s for upper level courses

• We just want you to understand the technique
24

Recursion is great for Divide and Conquer

Goal: Solve problem P on a piece of data

26

data

Recursion is great for Divide and Conquer

Goal: Solve problem P on a piece of data

27

data
Idea: Split data into two parts and solve problem

data 1 data 2

Solve Problem P Solve Problem P

Recursion is great for Divide and Conquer

Goal: Solve problem P on a piece of data

28

data
Idea: Split data into two parts and solve problem

data 1 data 2

Solve Problem P Solve Problem P

Combine Answer!

Divide and Conquer Example

Count the number of 'e's in a string:

29

j e ew l sb e

j eb e ew l s

j eb e ew l s

b e j e ew l s

0 1 0 1 0 1 0 0

1

2

1 0

1

3

1

Divide and Conquer Example

Count the number of 'e's in a string:

30

j e ew l

ej ew l0

2

e ew l1

ew l

e l

0

1 0

1

1

2

Will talk about how
to break-up later

Divide and Conquer

Goal: Solve really big problem P
Idea: Split into simpler problems, solve, combine

3 Steps:
1. Decide what to do for simple cases
2. Decide how to break up the task
3. Decide how to combine your work

31

Three Steps for Divide and Conquer

1. Decide what to do on “small” data
§ Some data cannot be broken up
§ Have to compute this answer directly

2. Decide how to break up your data
§ Both “halves” should be smaller than whole
§ Often no wrong way to do this (next lecture)

3. Decide how to combine your answers
§ Assume the smaller answers are correct
§ Combine them to give the aggregate answer

32

Divide and Conquer Example

def num_es(s):
"""Returns: # of 'e's in s"""
1. Handle small data

2. Break into two parts

3. Combine the result

34

Divide and Conquer Example

def num_es(s):
"""Returns: # of 'e's in s"""
1. Handle small data
if s == '':

return 0
elif len(s) == 1:

return 1 if s[0] == 'e' else 0

2. Break into two parts
left = num_es(s[0])
right = num_es(s[1:])

3. Combine the result
return left+right

35

Divide and Conquer Example

def num_es(s):
"""Returns: # of 'e's in s"""
1. Handle small data
if s == '':

return 0
elif len(s) == 1:

return 1 if s[0] == 'e' else 0

2. Break into two parts
left = num_es(s[0])
right = num_es(s[1:])

3. Combine the result
return left+right

36

“Short-cut” for
if s[0]=='e’:

return 1
else:

return 0

Divide and Conquer Example

def num_es(s):
"""Returns: # of 'e's in s"""
1. Handle small data
if s == '':

return 0
elif len(s) == 1:

return 1 if s[0] == 'e' else 0

2. Break into two parts
left = num_es(s[0])
right = num_es(s[1:])

3. Combine the result
return left+right

37

p e nn e

0 2

s[0] s[1:]

Divide and Conquer Example

def num_es(s):
"""Returns: # of 'e's in s"""
1. Handle small data
if s == '':

return 0
elif len(s) == 1:

return 1 if s[0] == 'e' else 0

2. Break into two parts
left = num_es(s[0])
right = num_es(s[1:])

3. Combine the result
return left+right

38

p e nn e

0 2+

s[0] s[1:]

Divide and Conquer Example

def num_es(s):
"""Returns: # of 'e's in s"""
1. Handle small data
if s == '':

return 0
elif len(s) == 1:

return 1 if s[0] == 'e' else 0

2. Break into two parts
left = num_es(s[0])
right = num_es(s[1:])

3. Combine the result
return left+right

39

Base
Case

Recursive
Case

Exercise: Remove Blanks from a String

def deblank(s):
"""Returns: s but with its blanks removed"""

1. Decide what to do on “small” data
§ If it is the empty string, nothing to do

if s == '':
return s

§ If it is a single character, delete it if a blank
if s == ' ': # There is a space here

return '' # Empty string
else:

return s
40

Exercise: Remove Blanks from a String

def deblank(s):
"""Returns: s but with its blanks removed"""

2. Decide how to break it up
left = deblank(s[0]) # str w/o blanks
right = deblank(s[1:]) # str w/o blanks

3. Decide how to combine the answers
return left+right # str concatenation

41

Putting it All Together

def deblank(s):
"""Returns: s w/o blanks"""
if s == '':

return s
elif len(s) == 1:

return '' if s[0] == ' ' else s

left = deblank(s[0])
right = deblank(s[1:])

return left + right

42

Handle
small
data

Break up the data

Combine answers

Putting it All Together

def deblank(s):
"""Returns: s w/o blanks"""
if s == '':

return s
elif len(s) == 1:

return '' if s[0] == ' ' else s

left = deblank(s[0])
right = deblank(s[1:])

return left+right

43

Base
Case

Recursive
Case

Following the Recursion

a b cdeblank

44

deblank a b cdeblank

stop (base case)
adeblank

stop (base case)

b cdeblank

…

You really, really, really want to visualize a call of deblank using Python Tutor. Pay attention to
the recursive calls (call frames opening up), the completion of a call (sending the result to the call
frame “above”), and the resulting accumulation of the answer.

Post-lecture exercise

• Visualize a call of deblank using Python Tutor
• Code in file deblank.py
• Pay attention to

§ the recursive calls (call frames opening up),
§ the completion of a call (sending the result to the

call frame “above”),
§ and the resulting accumulation of the answer.

• Do this exercise before next lecture. Really!

58

