ST

1110/2022sp

http://www.cs.cornell.edu

N

Lecture 13:
Recursion
(Sections 5.8-5.10)

CS 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]

Announcements (2/2)

Announcements (1/2)

e A3: not allowed to use use dict method update()

* Prelim 1 grades: read the grade centers
email/see announcement

* Gauging interest on (Ed Discussions) in catch-
up/subject-review sessions:

= https://edstem.org/us/courses/19140/discussion/1
290339

Recursion

Want more practice with for loops?

* posted codingbat to course homepage (4.F =
under "help, advice"), many easy-to-hard
problems

e for thing in list vs for in in range(len(...)):
= https://edstem.org/us/courses/19140/discussion/1
289599
e Extra optional exercises added to the lab 11
frontpage: loop_practice.py, loop _practice_test.
py, cornellasserts.py

4

Recursion

* Not new python, but a new way of organizing
thinking/algorithm
* Important in CS—CS majors will see it in action
all 4 years
e Introduction only in CS1110, over 2 lectures
1. Intro, examples, “divide & conquer”
2. Visualization, different ways to “divide”, + objects

e Hard work on understanding call frames and the
call stack will now pay off!

Recursion

Recursive Function:
A function that calls itself

An example in mathematics: factorial
¢ Non-recursive definition:
nl=nXnlX. X2X1

AN J

(n—IH

e Recursive definition:
n!=n(n-1)!
ol=1 Details in pre- :
lecture videos |

Recursive Function:
A function that calls itself

Two parts to every recursive function:
1. A simple case: can be solved easily
2. A complex case: can be made simpler (and simpler,
and simpler... until it looks like the simple case)

"Catherine"

import russian

Russian Dolls!

Russian Dolls!
Global Space Heap Space

di| id1 i
IIIIII idl [Doll |
02

hasSeam
innerDoll

1d2
hasSeam

dl = russian.Doll("Dmitry", None) innerpo11 idi |
d2 = russian.Doll("Catherine", d1) 10

def open_doll2(d):

"""Input: a Russian Doll
Opens the Russian Doll d """
print("My name is "+ d.name)
if d.hasSeam:

open inner doll

open_doll3(d.innerDoll)
else:

print("That's it!")

idx
hat would this
wha ook nane__|
fﬁ?(? hasSeam[:::::]
ke
! innerDoll :]

Think about opening a set of Russian
dolls as a “problem.” Which is the
simpler case,

the case where the doll has a seam and
another doll inside of it, or

the case where the doll has no seam
and no doll inside of it?

def open_doll(d):

"""Input: a Russian Doll
Opens the Russian Doll d """
print("My name is "+ d.name)
if d.hasSeam:

open inner doll

open_doll2(d.innerDoll)
else:

print("That's it!")

idx [oll |
hat would tHi®

OO —

fﬁ?(? hasSeam[:::::]

ike?

! innerDoll :]

def open_doll3(d):

"""Input: a Russian Doll
Opens the Russian Doll d """
print("My name is "+ d.name)
if d.hasSeam:

open inner doll

open_doll4(d.innerDoll)
else:

print("That's it!")

idx [oll |
This functio®
S| theoﬂ.\ers\. hasSeam:]

\ike
innerDoll :]

def open_doll(d):
"""Input: a Russian Doll PIay with the code
Opens the Russian Doll d """
print("My name is "+ d.name)
if d.hasSeam:

inner = d.innerDoll . X .
open_dol1(inner) Modify last statement and run script again:

else: = open_doll(d3)
print("That's it!") Modify last statement again and run script again :
= open_doll(d1)

Download modules russian.py, playWithDolls.py

Read playWithDolls.py; then run it as a script.

Do you understand the result?

idx e Use Python Tutor to visualize (more next lecture)
name:]
hasSeam[:::::]
innerDoll[:::::] 16
Recursion: Examples ‘ Blast Off!
e Russian Dolls g blast_off(5) # non-negative int
* Blast Off! 5
e Factorial 'l, 4
e Count number of ‘e’s 2
* Deblank — removing spaces from a string 1

BLAST OFF!

0

-—
BLAST OFF!

blast_off(5) # non-negative int def blast_off(n):
"""Input: a non-negative int

‘ Blast Off! ‘ Blast Off!
@) @)

z What is the simple case Counts down from n to Blast-Off!
'l, 3 that can be solved easily? if (n == 0):
2 print("BLAST OFF!")
else:
1 print(n)
blast_off(n-1)

blast off(@)
BLAST OFF!

* positiven>1
* nisl
BLAST OFF! [* nisO

20 21

A Mathematical Example: Factorial

Factorial as a Recursive Function

e Non-recursive definition:
nl=nXn-1X.. X2X1
=n(n-1 X ... X2 X 1)

e Recursive definition:
nl=n(n-1)! forn>0 Recursive case

ol=1 Base case

i Details in pre- |
{lecture videos | ,,

Recursion vs Iteration

def factorial(n): enl=n (n_l)l
"""Returns: factorial of n. ’)
Pre: n 2 @ an int""" L4 OI =1
if n == 0:

return 1 | BaSE case(s) ‘

return n*factorial(n-1) ‘ Recursive case ‘

What happens if there is no base case?

23

Recursion is great for Divide and Conquer

Recursion is provably equivalent to iteration
= |teration includes for-loop and while-loop (later)

= Anything can do in one, can do in the other

But some things are easier with recursion

= And some things are easier with iteration

Will not teach you when to choose recursion

= That’s for upper level courses

We just want you to understand the technique

24

Recursion is great for Divide and Conquer

Goal: Solve problem P on a piece of data

data

26

Recursion is great for Divide and Conquer

Goal: Solve problem P on a piece of data

data

Idea: Split data into two parts and solve problem

datal data 2

- AN
Y Y

Solve Problem P Solve Problem P

27

Goal: Solve problem P on a piece of data

data

Idea: Split data into two parts and solve problem

datal data 2

- AN
Y Y

Solve Problem P Solve Problem P

H/_/

Combine Answer!

28

Divide and Conquer Example

Count the number of 'e's in a string:

[ble[ile[wle[I]s] 3
2 [ble[ife] == [wle[l]s] 1
1 [ofe]4[iTe]1 1 [wle]=[1]s] 0
[b]4[e] [ilde] (wi=[e] [1]=(s]

0 1 0 1 O 1 O 0 =

Divide and Conquer

Goal: Solve really big problem P
Idea: Split into simpler problems, solve, combine

3 Steps:
1. Decide what to do for simple cases

2. Decide how to break up the task
3. Decide how to combine your work

31

Divide and Conquer Example

def num_es(s):
"""Returns: # of 'e's in s"""
1. Handle small data

2. Break into two parts

3. Combine the result

34

Divide and Conquer Example

Count the number of 'e's in a string:
ilewle[l] 2
0 [i] == [elwle[1] 2

1 [e] wle[1] 1

0 [w == [e]1] 1
Will talk about how 1 [e]=[1] 0

to break-up later

Three Steps for Divide and Conquer

30

1. Decide what to do on “small” data
= Some data cannot be broken up
= Have to compute this answer directly
2. Decide how to break up your data
= Both “halves” should be smaller than whole
= Often no wrong way to do this (next lecture)
3. Decide how to combine your answers
= Assume the smaller answers are correct
= Combine them to give the aggregate answer

Divide and Conquer Example

32

def num_es(s):
"""Returns: # of 'e's in s"""
1. Handle small data
if s == "
return ©
elif len(s) == 1:
return 1 if s[@] == 'e' else ©

35

Divide and Conquer Example

def num_es(s):
"""Returns: # of 'e's in s"""
1. Handle small data
if s == "
return ©
elif len(s) == 1:
return 1 if s[@] == 'e

else ©

Divide and Conquer Example

“Short-cut” for
if s[@]=="e’:
return 1

else:
return @

36

Divide and Conquer Example

def num_es(s):
"""Returns: # of 'e's in s"""

s[0] s[1:]

def num_es(s):
"""Returns: # of 'e's in s"""

2. Break into two parts

left = num_es(s[@]) s[0] s[1:]
right = num_es(s[1:])
[:] efnfinf|e
0 2 37

Divide and Conquer Example

[:J e|n|inj|e

3. Combine the result

return left+right
0O + 2 s

Exercise: Remove Blanks from a String

def deblank(s):
"""Returns: s but with its blanks removed"""

1. Decide what to do on “small” data

= |f it is the empty string, nothing to do
if s == "'
return s

= If it is a single character, delete it if a blank
if s == '
return

else:

return s

There is a space here
Empty string

40

def num_es(s):
"""Returns: # of 'e's in s"""
1. Handle small data

if s == "":
return © Base
elif len(s) == 1: Case

return 1 if s[@] == 'e' else ©

Recursive
Case

39

2. Break into two parts
left = num_es(s[@])
right = num_es(s[1:])

3. Combine the result
return left+right

Exercise: Remove Blanks from a String

def deblank(s):
"""Returns: s but with its blanks removed"""
2. Decide how to break it up
left = deblank(s[@]) # str w/o blanks
right = deblank(s[1:]) # str w/o blanks

3. Decide how to combine the answers

return left+right # str concatenation

41

Putting it All Together

def deblank(s):

Returns: s w/o blanks

if s == "
return s Handle
elif len(s) == 1: small
. L data
return if s[@] == else s

left = deblank(s[@]) [ook oo the dat }
right = deblank(s[1:]) reak up the data

return left + right :}»[Combine answers }

42

Following the Recursion

Putting it All Together

deblank a b c

£ N

debbnk[:] deblank| a b c

stop (base case) Q %

deMank:g] deblank b C

<
stop (base case) JZL

You really, really, really want to visualize a call of deblank using Python Tutor. Pay attention to
the recursive calls (call frames opening up), the completion of a call (sending the result to the call
frame “above”), and the resulting accumulation of the answer.

def deblank(s):

Returns: s w/o blanks

if s == "
return s Base
elif len(s) == 1: Case
return '' if s[@] == ' ' else s

left = deblank(s[@])

right = deblank(s[1:]) Recursive
Case

return left+right

43

Post-lecture exercise

Visualize a call of deblank using Python Tutor
Code in file deblank.py
Pay attention to

= the recursive calls (call frames opening up),

= the completion of a call (sending the result to the
call frame “above”),

= and the resulting accumulation of the answer.

Do this exercise before next lecture. Really!

58

