
Lecture 11:
Iteration and For-Loops

(Sections 4.2 and 10.3)

CS 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2022sp

http://www.cs.cornell.edu/courses/cs1110/2022sp

Announcements

• A3 will be released tonight
• Prelim 1 approximate grade release:

§ Evening of Tuesday, March 15

3

Important concept in computing: Doing
things repeatedly

1. Perform n trials or get n samples.
§ Run a protein-folding simulation for 106 time steps
§ Next 50 ticket purchases entered in random draw for upgrade

2. Process each item in a sequence
§ Compute aggregate statistics (e.g., mean, median) on scores
§ Send everyone in a Facebook group an appointment time

3. Do something an unknown
number of times
§ CUAUV team, vehicle keeps

moving until reached its goal
4

Repeat a known (definite)

number of times

Repeat until something happens—

repeat an indefinite number of times

1st Attempt: Summing the Elements of a List

def sum(the_list):
"""Returns: the sum of all elements in the_list
Precondition: the_list is a list of all numbers
(either floats or ints)"""
result = 0
result = result + the_list[0]
result = result + the_list[1]
…
return result

5

Houston, we have
a problem

Working with Sequences

• Sequences are potentially unbounded
§ Number of elements is not fixed
§ Functions must handle sequences of different lengths
§ Example: sum([1,2,3]) vs. sum([4,5,6,7,8,9,10])

• Cannot process with fixed number of lines
§ Each line of code can handle at most one element
§ What if there are millions of elements?

• We need a new approach

6

For Loops: Processing Sequences

for x in grades:
print(x)

• loop sequence: grades
• loop variable: x
• loop body: print(x)
To execute the for-loop:

1) Check if there is a “next”
element of loop sequence

2) If so:
• assign next sequence

element to loop variable
• Execute all of the body
• Go back to 1)

3) If not, terminate execution

grades has
more elements

put next
element in x

True

False

print(x)

7

Solution: Summing the Elements of a List

def sum(the_list):
"""Returns: the sum of all elements in the_list
Precondition: the_list is a list of all numbers
(either floats or ints)"""

result = 0

for x in the_list:
result = result + x

return result

8

Create var. to keep track of 0's
for each element in the list…

check if it is equal to 0
add 1 if it is

Return the variable/counter

For Loops and Conditionals

def num_zeroes(the_list):
"""Returns: the number of zeroes in the_list
Precondition: the_list is a list"""

9

count = 0
for x in the_list:

if x == 0:
count = count + 1

return count

For Loop with labels

def num_zeroes(the_list):
"""Returns: the number of zeroes in the_list
Precondition: the_list is a list"""

10

count = 0
for x in the_list:

if x == 0:
count = count + 1

return count

Loop sequence

Loop variable

Loop body

Accumulator variable

Accumulator

• A variable to hold a final answer
• for-loop adds to the variable at each step
• The final answer is accumulated, i.e., built up, one

step at a time. A common design pattern:

• Accumulator does not need to be a number. E.g.,
can be a string to be built-up

11

accumulator
for ________ :

accumulator = accumulator + _______

Exercise

12

def ave_positives(my_list):
"""Returns: avg (float) of positive values in my_list

my_list: a list of #s with at least 1 positive value
"""

• Be goal oriented à can work
backwards

• Name a variable for any value that
you need but don’t have yet

• Break down a problem!
• … break into parts
• … solve simpler version first

• Remember loop/accumulation
pattern

What if we aren’t dealing with a list?

So far we’ve been building for-loops around
elements of a list.

What if we just want to do something some
number of times?

range to the rescue!

14

range(x)
generates 0,1,…,x-1

Important: range does not return a list
can to convert range’s return value into a list

range(a,b)
à a,…,b-1

range(a,b,s)
à a,a+s,a+2s,…,b-1

range: a handy counting function!

15

>>> print(range(6))
range(0, 6)

>>> second_six =
list(range(6,13))
>>> print(second_six)
[6, 7, 8, 9, 10, 11, 12]

>>> first_six =
list(range(6))
>>> print(first_six)
[0, 1, 2, 3, 4, 5]

Arguments must

be int expressions

What gets printed? (Q)

16

A: 0
B: 2
C: 3
D: 4
E: 5

t= 0
for k in range(5, 1, -1):

t = t + 1
print(t)

Modifying the Contents of a List
def add_bonus(grades):

"""Adds 1 to every element in a list of grades
(either floats or ints)"""
size = len(grades)
for k in range(size):

grades[k] = grades[k]+1

lab_scores = [8,9,10,5,9,10]
print("Initial grades are: "+str(lab_scores))
add_bonus(lab_scores)
print("With bonus, grades are: "+str(lab_scores))

18
Watch this in the

python tutor!

If you need to
modify the list, you

need to use range to
get the indices.

Common For-Loop Mistake #1

Modifying the loop variable instead of the list
itself.

19

For-Loop Mistake #1 (Q)

def add_one(the_list):
"""Adds 1 to every element in the list
Precondition: the_list is a list of all numbers
(either floats or ints)"""
for x in the_list:

x = x+1

a = [5, 4, 7]
add_one(a)
print(a)

20

A: [5, 4, 7]
B: [5, 4, 7, 5, 4, 7]
C: [6, 5, 8]
D: Error
E: I don’t know

What gets printed?

Modifying the loop variable (here: x).

Modifying the Loop Variable (1)

def add_one(the_list):
"""Adds 1 to every elt
Pre: the_list is all numb."""
for x in the_list:
x = x+1

grades = [5,4,7]
add_one(grades)

22

0
1
2

id4

5
4
7

grades id4

add_one 1

1

2

Heap Space Global Space

Call Frame

the_listid4

Modifying the Loop Variable (2)

23

0
1
2

id4

5
4
7

Heap Space Global Space

add_one 1 2

Call Frame

x 5

grades id4

def add_one(the_list):
"""Adds 1 to every elt
Pre: the_list is all numb."""
for x in the_list:
x = x+1

grades = [5,4,7]
add_one(grades)

1

2

the_listid4

def add_one(the_list):
"""Adds 1 to every elt
Pre: the_list is all numb."""
for x in the_list:
x = x+1

grades = [5,4,7]
add_one(grades)

Modifying the Loop Variable (3)

24

Increments x in frame
Does not affect folder

add_one 1 2 1

x

0
1
2

id4

5
4
7

Heap Space Global Space

Loop back
to line 1 Call Frame

5 6

grades id41

2

the_listid4

def add_one(the_list):
"""Adds 1 to every elt
Pre: the_list is all numb."""
for x in the_list:
x = x+1

grades = [5,4,7]
add_one(grades)

Modifying the Loop Variable (4)

25

Next element stored in x.
Previous calculation lost.

add_one 1 2 1 2

Call Frame

x

0
1
2

id4

5
4
7

Heap Space Global Space

5 6 4

grades id41

2

the_listid4

def add_one(the_list):
"""Adds 1 to every elt
Pre: the_list is all numb."""
for x in the_list:
x = x+1

grades = [5,4,7]
add_one(grades)

Modifying the Loop Variable (5)

26

add_one 1 2 1 2 1

Call Frame

x

0
1
2

id4

5
4
7

Heap Space Global Space

5 6 4 5

grades id41

2
Loop back
to line 1

the_listid4

def add_one(the_list):
"""Adds 1 to every elt
Pre: the_list is all numb."""
for x in the_list:
x = x+1

grades = [5,4,7]
add_one(grades)

Modifying the Loop Variable (6)

27

Next element stored in x.
Previous calculation lost.

add_one 1 2 1 2 1

Call Frame

x

0
1
2

id4

5
4
7

Heap Space Global Space

2

5 6 4 5 7

grades id41

2

the_listid4

def add_one(the_list):
"""Adds 1 to every elt
Pre: the_list is all numb."""
for x in the_list:
x = x+1

grades = [5,4,7]
add_one(grades)

Modifying the Loop Variable (7)

28

add_one 1 2 1 2 1

Call Frame

x

0
1
2

id4

5
4
7

Heap Space Global Space

2 1

5 6 4 5 7 8

grades id41

2
Loop back
to line 1

the_listid4

def add_one(the_list):
"""Adds 1 to every elt
Pre: the_list is all numb."""
for x in the_list:
x = x+1

grades = [5,4,7]
add_one(grades)

Modifying the Loop Variable (8)

29

Loop is completed.
Nothing new put in x.

add_one

Call Frame

x

RETURN NONE

0
1
2

id4

5
4
7

Heap Space Global Space

1 2 1 2 1 2 1

5 6 4 5 7 8

grades id41

2

the_listid4

add_one

the_listid4

Call Frame

x

Modifying the Loop Variable (9)

30

0
1
2

id4

5
4
7

Heap Space Global Space

1 2 1 2 1 2 1

5 6 4 5 7 8No lasting changes.
What did we

accomplish? L

grades id4

def add_one(the_list):
"""Adds 1 to every elt
Pre: the_list is all numb."""
for x in the_list:
x = x+1

grades = [5,4,7]
add_one(grades)

1

2

RETURN NONE

Common For-Loop Mistakes #2

Modifying the loop sequence as you walk through
it.

31

For-Loop Mistake #2 (Q)

b = [1, 2, 3]
for a in b:

b.append(a)
print(b)

32

A: never prints b
B: [1, 2, 3, 1, 2, 3]
C: [1, 2, 3]
D: I do not know

Modifying the loop sequence as you walk
through it.

What gets printed?

