Lecture 10:
Lists and Sequences

(Sections 10.0-10.2, 10.4-10.6, 10.8-10.13, 12.1, 12.2)

CS 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]

Today: A1l feedback out, revisions enabled

e Set your CMS notifications to get email when "one of
your grades is changed"

e Watch for instruction announcement, but:
the expected first "grade" is -99999

= "there's something we'd like you to fix"

e Revising will change -99999 to -9999 to ... until 10/10!

Analogies to ('foreign') languages

e The "dot" (.) is like an apostrophe: Xx.y is like "x's y", or the "y
that belongs to x"

* methods: functions :: irregular verbs : verbs

= Different calling syntax: some_string.

? 4 No labs

A2 solutions out "Xt day

by Sun. night

Al "grades" ' prelim study guide
out out by Wed. night

3

Magical traditions: names have power

* Function: a genie in a bottle you can call on.
= You put input into the bottle, the genie assigns them "private
nicknames" (the parameter names)
= Does "hidden magic"/"scratch work" inside its
call frame -- the "bottle".
= Can delegate by calling other genies.

e Call stack: list of pending delegated function calls (to-do list).

* Object: can be affected by a function that knows its "secret
name", or id
= Created by a special function call "let there be a new Point":
Point(...); returns the secret name of new object so you can

access it --- if you store it somewhere safe (a variable). ’

Depicted: when line 6 of swap_x() has been executed,
but before function ends (returns None).
The objects were affected.

Global Space

- id6
/I/ import shapes \\“ P @
2 q| id7 X@Y z
3 def swap_x(p,q):
4 tmp=px 7
> px=gx Point3
6 X=
, e {71y [4]2[5]
8 p=shapes.Point3(1,2,3) Call Stack e

9 q=shapes.Point3(3.4.5)
10
\Il swap_x(p, q)
AN

http://www.cs.cornell.edu/courses/cs1110/2022sp

Depicted: when line 6 of bad_swap() has been executed,
but before function ends (returns None).
The objects weren't affected.

Global Space
e N jdg
[| import shapes \
>
3 def bad_swap(p, q):
4 tmp =p id7
S p=q Point3

~N
=]
I
>
[]
<
[]
N

p = shapes Point3(1,2,3) Call Stack
9 q=shapes.Point3(3 4,5)
10 bad_swap 456
| 11 bad_swap(p, q)
N /

id6id7| P tmp

id7idé | g

Call stack example (Spring 2021 A2)

7 def replace_first(s, target, rep):
8. """Returns: copy of s with the FIRST instance of target in s
replaced by rep..."""

16 pos = s.index(target)

17 before = s[:pos]

18. after = s[pos + len(target):]

20 return before + rep + after

21

22 def replace2(s, target, rep):

23 """Replace first two occurrences of target in's..."""

27 before = s[:s.index(target)+len(target)]

28 after = s[s.index(target)+len(target):]

29 if s.count(target) > 1:

30 after = replace_first(after, target, rep)
31 else:

32. WARNING =

34, return replace_first(before,target,rep)+after

37 x = "Millissippi"

replace2(x, ‘L', 's")
VS.

replace2(x, 'LL', 's') ’

9

Lists Have Methods Similar to String

(x=15,6,59,1523 |

But to get the length of
a list you use a function,
not a class method:

e <list>.index(<value>)
= Return position of the value len(x)
= ERROR if value is not there slert
= x.index(9) evaluates to 3

e <list>.count(<value>)
= Returns number of times value appears in list

= x.count(5) evaluates to 2

8
Sequences: Lists of Values
String List
e s='abcd' e x=1[5,6,5,9,15, 23]
01 2 3 4 01 2 3 4 5
HEEEERED
* Put characters in quotes ¢ Put values inside []
= Use \' for quote character = Separate by commas
e Access characters with [] e Access values with []
= s[0]is ‘a' = x[0]is 5
= s[5] causes an error = x[6] causes an error
= 5[0:2] is 'ab' (excludes c) = x[0:2] is [5, 6] (excludes 2" 5)
= s[2:]is'cd’ = x[3:]is [9, 15, 23]
e len(s) 2 5, length of string e len(x) = 6, length of list
(Sequence is a name we give to both) 10
10

Representing Lists

x=[5,7,4,-2]

Wrong: Correct:
Global Space
0 |5
117
2 |4
3 -2

13

11
Lists: objects with special syntax
(like nouns with "weird" plurals)
List Objects
¢ Attributes are indexed ¢ Attributes are named
= Example: x[2] = Example: p.x
Global Space Global Space
id2 p| id3 id3
list
0|5 X
117 y
2 |4
3|2 z
14

14

Lists Can Hold Any Type

Expression evaluates to
value; value goes in list id1

Lists of Objects

e List elements are variables
= Can store base types and ids
= Cannot store folders

pl=Point3(1, 2, 3)
p2 = Point3(4, 5, 6)
p3 = Point3(7, 8, 9)

Tist_of_integers =[5, 7,3+1, -2] 0|5
[Iist_of_strings= ['h', ",] 1|7
'therel!'] 2 |4
3 |-2
Global Space
. . A id2
list_of_integers | idl IE
o |m
list_of_strings | id2 1%
2 [
3 |'there! 15
15
Lists of Objects
e List elements are variables pl = Point3(1, 2, 3)
7 7
= Can store base types and ids p2= Point3(4 5 6)
= Cannot store folders T
p3 = Point3(7, 8, 9)
Global Space
. ar x = [p1,p2,p3]
p1 [Poin3]
i
p3 *
0 |id1
x : 1 [
p2y or 1]y V.S

Global Space X= [pl p2 p3]
p1 U boma)
w2 -
I
p3 @
0 |id1
: , 1 [ioz
&'
18
List is mutable; strings are not
e Format: x=[57.4:2]
<var>[<index>] = <value> x[11=8
) ; s = “Hello!”
= Reassign at index
s[0] =)

= Affects folder contents TypeError: 'str' object does not

19

List Methods Can Alter the List

(x=15,6,5,91] (y=115 16,1519

e <list>.append(<value>)
= Adds a new value to the end of list
= x.append(-1) changes the list to [5, 6, 5, 9, -1]

e <list>.insert(<index>,<value>)
= Puts value into list at index; shifts rest of list right
= y.insert(2,-1) changes the list to [15, 16, -1, 15, 19]

 <list>.sort() | What do you think this does?

21

= Variable is unchanged support item assignment
Global Space
. . x | idl id1
e Strings cannot do this st |
= Strings are immutable 05
1 |X8
2 |4
3 |2
20
Q2: Swap List Values?
def swap(b, h, k):
"""Procedure swaps b[h] and b[k] in b
Precondition: b is a mutable list, h
1 te;n;_kbz[a:]s valid positions in the list Global Space
2 | b[h]=b[k] x -m id4
3 b[k]= temp 0|5
1|4
X=[5,4.7,6,8] What gets printed? 2 |7
swap(x, 3, 4) A:8 9
print(x(3]) B: 6 o R
C: Something else
D: Idon’t know
24
24

List Slices Make Copies:
a slice of a list is a new list

x=[5,6,5,9]
y=x[1:3]

Global Space

x[Lias |

Q3: List Slicing

* Execute the following:

y B
1 (6
2 (5
3 |9
copy means id6
new folder
oo |
1
30
30
A3: List Slicing
* Execute the following: ~ Global Space
>>>x=15,6,5,9, 10] x| idS id5
>>>y =x[1:] y o5
>>>y[0] =7 106
e What is x[1]? ; ;
A7 4 |10
B:5 id6 i
C:6 CORRECT o [7"5‘
D: ERROR s
E: I don’t know 2 |9
3 [10
32
Ad
* Execute the following: Global Space
>>>x=[5,6,5,9,10] x ids
55>y =X o
>>>y[1]=7 y a ff z
* What is x[1]? 2 |5
3 |9
A:7 CORRECT 4 [10

B:5

C:6

D: ERROR

E: I don’t know

>>>x=[5,6,5,9, 10]
>>>y = x[1:]
>>>y[0] =7

e What is x[1]?

D: ERROR
E: I don’t know

31

Q4

¢ Execute the following:
>>>x=[5,6,5,9, 10]
>>>y =X
>>>y[1]=7

e What is x[1]?

A7

B:5

C:6

D: ERROR

E: I don’t know

33
Things that Work for All Sequences
(s = slithy’) (x=156,9,615,5 |
s.index(‘s’) > 0 Ty x.index(5) - 0
s.count(‘t’) > 1 x.count(6) - 2
len(s) > 6 built-infns len(x) > 6
s[4] - “h” x[4] > 15
s[1:3] = “Ii” sleing x[1:3] - [6, 9]
s[3:] = “thy” x[3:]1 - [6, 15, 5]
s[-2] - “h” x[-2] > 15

s+ ‘toves’ > “slithy toves”
s * 2 = “slithyslithy”
‘t"ins > True

operators

34

x+[1,2]>15,6,9,6,15,5,1,2]
x*2-15,6,9,6,15,5,5,6,9, 6, 15, 5]
15inx - True

38

ﬂ Lists and Strings Go Hand in Hand

text.split(<sep>): return a list of

<sep>.join(words):
concatenate the items in the
list of strings words, separated
by <sep>.

>>> text = 'A sentence is just\n a list of words'

>>> words = text.split()
>>> words

['A', 'sentence’, 'is', 'just’, 'a’, 'list', 'of', 'words']
>>> lines = text.split("\n')

words in text (separated by
<sep>, or whitespace by default)

‘Turns string into a list of words ‘

>»> lines ‘Turns string into a list of lines ‘

['A sentence is just', ' a list of words']

>>> hyphenated ="-'.join(words)

>>> hyphenated ‘Combines elements with hyphens ‘

'A-sentence-is-just-a-list-of-words'
>>> hyphenated2 = '-'.join(lines[0].split()+lines[1].split())
>>> hyphenated2

'A-sentence-is-just-a-list-of-words'

Merges 2 lists, combines
elements with hyphens

39

Returning multiple values

* Can use lists/tuples to return multiple values

INCHES_PER_FOOT =12

def to_feet_and_inches(height_in_inches):
feet = height_in_inches // INCHES_PER_FOOT
inches = height_in_inches % INCHES_PER_FOOT
return [feet, inches]

all_inches = 68 # Prof. Bracy wrote this
data=to_feet_and_inches(all_inches)
print(You are “+str(data[0])+” feet, “+str(data[1])+” inches.”)

40

