Lecture 8:

Conditionals & Control Flow
(Sections 5.1-5.7)

CS 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2022sp

Lecture Aftertho

» Lots of written questions about Print vs Return

= Please see:
https://edstem.org/us/courses/19140/discussion/1084754

« A common post-lecture If-Elif-Else question:
= https://edstem.org/us/courses/19140/discussion/1160274

https://edstem.org/us/courses/19140/discussion/1084754
https://edstem.org/us/courses/19140/discussion/1160274

Announcements

= Al:al first.py & policy_acknowledgement submission
e Submit whatever you have at 2pm
e Keep submitting as you make significant changes

e Final submission due tonight at 11:59pm

= Conditionals—today’s topic—not allowed in Al

What should | wear today?

L —

def what_to_wear(teﬁE}:
print("Today you should wear:")
> 60: no jacket required
40-60: jacket
20-40: winter coat
< 20: all the gear you own

—

How to we implement this in Python?

Conditionals: If-Statements

Format Example
if <boolean-expression>: |# is there a new high score?
<statement> if curr_score > high_score:
high score = curr_score
<statement> print(“New high score!”)
Execution:

if (boolean-expression) is true, then execute all of the statements

indented directly underneath (until first non-indented statement)

6

What are Boolean expressions?

Expressions that evaluate to a Boolean value.

1s_rainy = False Comparison operations:
is_windy = True if temp < 30 and is_rainy:
temp = 12 print("Roads will be icy!")
Boolean variables: if temp > 7@:

print("Hallelujah!")

if is rainy:

print(“Bring an umbrella!”)

Boolean operations:

if is windy and not is rainy:
print(“Let's fly a kite!”)

What gets printed, Round 1

a = a =0 a =0 a =0 a =
print(a) a=a+1 if a == 9: if a == 1: if a ==
print(a) a=a+1 a=a+1 a=a+1
print(a) print(a) a=a+1
print(a)

(Let's look at these one by one.)

What gets printed? (Question)

a =0
if a == 0:
a=a+1 g:@L
1T a == C:2
a =a+ 2 D: 3
a =a+1 E:1do not know

10

Conditionals: If-Else-Statements

Format

if <boolean-expression>:

Example

new record?

<statement> if curr_score > high_score:
- print(“New record!”)
else:
else:
<statement> . .
print(“Nice try.”)
Execution:

if (boolean-expression) is true, then execute statements indented

under 1f; otherwise execute the statements indented under else

12

Conditionals: “Control Flow” Statements

if b b Branch Point:
*) True Evaluate & Choose
sl # statement
<1 False
S3 # statement Statements:
2 Execute
s3
if b: / Flow \
b Program only
s1 takes one path
else: during an
S?2 exec;:tion |
something wi
<3 (g

\not be executed!)/

13

What gets printed, Round 2

a =0 a =0 a =0 a =0
if a == if a == 1: if a == if a ==
a =a+1 a =a+1 a =a+1 a =

else: else: else: else

a =a + 2 a =a+ 2 a =a+ 2 a =
a =a+1 a =
print(a) print(a) print(a) a=a+
print(a)

(Let's look at these one by one.)

+

1

14

Program Flow (car locked, 0)

1T determines which statement is executed next

def get in car(is_locked): Global Space
1 if is locked:
2 print(“Unlock car!”)
3 print(“Open the door.”)

#car‘_loc ked = True
get _in car(car_locked)

16

Program Flow (car locked, 1)

1T determines which statement is executed next

def get in car(is_locked): Global Space
1 if is locked:
2 print(“Unlock car!?”) car_locked| True
3 print(“Open the door.”)

car_locked = True
-get_in_car‘ (car_locked)

17

Program Flow (car locked, 2)

1T determines which statement is executed next

1

3

f get _in car(is_locked):
if is locked:
print(“Unlock car!”)
print(“Open the door.”)

car_locked = True
get _in car(car_locked)

Global Space

car_locked

True

Call Stack

get in_car

is locked

True

18

Program Flow (car locked, 3)

1T determines which statement is executed next

1
2
3

def get _in car(is_locked):

if gs_locked:
print(“Unlock car!”)

print(“Open the door.”)

car_locked = True
get _in car(car_locked)

Global Space

car_locked

True

Call Stack

get in_car

is locked

True

19

Program Flow (car locked, 4)

1T determines which statement is executed next

def get in car(is_locked): Global Space
1 if is locked:
2 =) print(“Unlock car!?”) car_locked| True
3 print(“Open the door.”)

car_locked = True
get _in_car(car_locked) Call Stack

get_in_car | | 173

is locked| True

Unlock car!

20

Program Flow (car locked, 5)

1T determines which statement is executed next

def get in car(is_locked): Global Space
1 if is locked:
2 print(“Unlock car!?”) car_locked| True

3 »pr‘int(“Open the door.”)

car_locked = True
get _in_car(car_locked) Call Stack

get_in car 1,2’3/

is locked| True

Unlock car! RETURN | None
Open the door.

21

Program Flow (car locked, 6)

1T determines which statement is executed next

def get in car(is_locked): Global Space
1 if is locked:
2 print(“Unlock car!?”) car_locked| True
3 print(“Open the door.”)

car_locked = True

iet_in_car‘(car‘_locked) Call Stack /

get_in car /,2’3/

is lock&d | True

Unlock car! REJURN | None
Open the door. /

22

Program Flow (car not locked, 0)

1T determines which statement is executed next

def get in car(is_locked): Global Space
1 if is locked:
2 print(“Unlock car!”)
3 print(“Open the door.”)

#car‘_locked = False
get _in car(car_locked)

23

Program Flow (car not locked, 1)

1T determines which statement is executed next

def get in car(is_locked): Global Space
1 if is locked:
2 print(“Unlock car!?”) car_locked| False
3 print(“Open the door.”)

car_locked = False
-get_in_car‘ (car_locked)

24

Program Flow (car not locked, 2)

1T determines which statement is executed next

1
2
3

ﬂﬁi}get_in_car(is_locked):
if is locked:
print(“Unlock car!”)
print(“Open the door.”)

car_locked = False
get _in car(car_locked)

Global Space

car_locked

False

Call Stack

get in_car

is locked

False

25

Program Flow (car not locked, 3)

1T determines which statement is executed next

1
2
3

def get _in car(is_locked):
if is locked:
print(“Unlock car!”)
print(“Open the door.”)

car_locked = False
get _in car(car_locked)

Global Space

car_locked

False

Call Stack

get in_car

is locked

False

26

Program Flow (car not locked, 4)

1T determines which statement is executed next

def get in car(is_locked): Global Space
1 if is locked:
2 print(“Unlock car!?”) car_locked| False

3 *r‘int(“Open the door.”)

car_locked = False

get _in_car(car_locked) Call Stack

get in_car

i3

is locked

Open the door. RETURN

False

None

27

Program Flow (car not locked, 5)

1T determines which statement is executed next

def get in car(is_locked): Global Space
1 if is locked:
2 print(“Unlock car!?”) car_locked| False
3 print(“Open the door.”)
car_locked = False
|Ee’c_in_car‘(car‘_locked) Call Stack /
get _in_car 4{;
is locked False
Open the door. REFURN | None

/

28

What does the call frame look like next? (Q)

ﬁef max(X,y):
if x > y:
2 return X

3 return vy

max(9,3)

Current call frame;

max 1

X 0

y 3

What does the call frame look like next? (Q)

ﬂef max(x,y): A:
if x > y:

2 return X

3 return vy

max(9,3)

Current call frame: C.

max 1

X 0

y 3

max || A2
0
3

max | |73
X |0
y |3
RETURN | 3

B:

MaX

RETURN

MaX

30

Program Flow and Variables

Variables created inside 1T continue to exist past 1:
a =0
if a == 0:
b =a+ 1
print(b)

...but are only created if the program actually
executes that line of code

35

What gets printed, Round 3

36

Control Flow and Variables (Q1)

def max(x,y):

Returns: max of x, y
note: code has a bug!

check if x is larger
if x > y:

bigger = Xx
return bigger

maximum = max(3,0)

Value of maximum?

A: 3

B:©

C: Error!

D:1do not know

38

Control Flow and Variables (Q2)

def max(x,y):

Returns: max of x, y
note: code has a bug!

check if x is larger
if x > y:

bigger = Xx
return bigger

maximum = max(0,3)

Value of maximum?

A: 3

B:©

C: Error!

D:1do not know

40

Program Flow and Variables

def zero or one(a):

if a == 1:

else:
b

print(b)

@/

a)
make sure that ALL

1T branches create

the variable

- //

42

Conditionals: If-Elif-Else-Statements (1)

Format Example
if <Boolean expression>: # Find the winner
<statement> if scorel > score2:
elif <Boolean expression>: winner = “Player 1%
<statement> elif score2 > scorel:
winner = “Player 2”
else:
else:

winner = “Players 1 and 2"
<statement>

43

Conditionals: If-Elif-Else-Statements (2)

Format Notes on Use
1f <Boolean expression>: * No limit on number of elif
<statement>

= Must be between if, else

elif <Boolean expression>: e elseisoptional

<statement> e
= if-elif by itselfis fine
e Booleans checked in order
else: = Once Python finds a true
<statement> <Boolean-expression>, skips

over all the others

= else means all <Boolean-
expression> are false

44

If-Elif-Else (Question)

a = 2
What gets printed?
if a == 2: A: 2
a =3 B: 3
elif a == 3: C:4
a =4 D: 1 do not know

print(a)

45

What gets printed, Round 4

a = 2 a = 2

if a == 2: if a == 2:
a =3 a =3

elif a == 3 if a == 3:
a =14 a =4

47

The logic can get a little dizzying...

def what to wear(raining, freezing):

if raining and freezing:
print(”Wear a waterproof coat.”)

elif raining and not freezing:
print(”’Bring an umbrella.")

elif not raining and freezing:
print(”Wear a warm coat!")

else:
print(”A sweater will suffice.")

49

Nested Conditionals to the rescuel

def what to wear(raining, freezing):
if raining:
if freezing:
print(”Wear a waterproof coat.”)
else:
print(”’Bring an umbrella.™)
else:
if freezing:
print(”Wear a warm coat!")
else:
print(”A sweater will suffice.")

50

Program Flow and Testing

determine winner

if x _score > y score:

winner = "Xx

else:
winner = "y"

Can use print statements

to examine program flow

51

Program Flow and Testing

determine winner

print('before the if”’)

if x _score > y score:
print(‘inside the if’)

. m,mn <« 7 ”
winner = X — “traces” or
alse: / “breadcrumbs”
print(‘inside the else’)
winner = "y"

print('after the if’) '‘before the if'

'inside the if'
X_score must

have been greater || after the if’
L thany score

/

Can use print statements
to examine program flow

52

Traces (control) and Watches (data)

determine winner <= TRACES

print('before the if’) < Trace program flow
What code is being
executed? Place print

statements at the

if x _score > y score:
print(‘inside the if’) €=

winner = -X beginning of a code block

print(‘winner = '+winner) €= that might be skipped.
else:

print(‘inside the else’) €= <— WATCHES

winner = "y" Watch data values

print('winner = '+winner) €= \Whatis the value of a
print('after the if’) <= variable? Place print

statements after
assignment statements.

