
Lecture 7:
Objects

(Chapter 15)

CS 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2022sp

http://www.cs.cornell.edu/courses/cs1110/2022sp

• Try out the questions on slide 28 & 35!
§ Put them in the python tutor!

§ Look at the solutions posted on the Lecture Materials

• We did not get to Slide 43 and will cover this on
Thursday.

Lecture Afterthoughts

2

• OKAY to show staff your code, just not other students
who are not in your group

• Per the A1 instructions:
§ Don't submit on CMS until you form your group on CMS

§ If you did submit before you grouped on CMS, send email to
cs1110-staff with the subject "A1 group" Make sure to cc-the
person you want to be grouped with as an acknowledgement
that the group formation request is reciprocated.

Announcements

3

Be sure to start A1 now

• Start A1 now J
§ Give yourself time to think through any difficult parts
§ Consulting/office hours not too busy now—can get help fast
§ There’s time to schedule a 1-on-1 appt
§ Rewarding learning experience

• Start A1 the night before due date
§ No time to deal with “sudden” difficulties

§ Consulting/office hours very crowded—looonnng wait time

§ Stressful experience undermines learning
4

Type: set of values & operations on them

5

HandoutSlide

Type float:
• Values: real numbers
• Ops: +, -, *, /,//, **,%
Type int:
• Values: integers
• Ops: +, -, *, //, %, **
Type bool:
• Values: True, False
• Ops: not, and, or

Type str:
• Values: strings
• Double quotes: "abc"
• Single quotes: 'abc'

• Ops: + (concatenation)

Built-in Types are not “Enough” (1)

• Want a point in 3D space
§ We need three variables
§ x, y, z coordinates

• What if we have lots of points?
§ Vars x0, y0, z0 for first point
§ Vars x1, y1, z1 for next point
§ …
§ This can get really messy

• How about a single variable
that represents a point?

6

x 2

y 3

z 5

Built-in Types are not “Enough” (2)

• Want a point in 3D space
§ We need three variables
§ x, y, z coordinates

• What if we have lots of points?
§ Vars x0, y0, z0 for first point
§ Vars x1, y1, z1 for next point
§ …
§ This can get really messy

• How about a single variable
that represents a point?

7

• Can we collect them
together in a “folder”?

• Motivation for objects

x 2

y 3

z 5

Analogy: A folder is used to store info (data)

8

x
2

y
3

z
5

Aside: data on your computer is stored in folders

9

< > agorman < > Documents

chem2080 hadm1150cs1110

stsci2100

< > cs1110

assignments lectureslabs

SHOULD BE!!
/

Objects: Organizing Data in Folders

• An object is like a manila folder
• It contains other variables

§ Variables are called attributes
§ These values can change

• It has an ID that identifies it
§ Unique number assigned by Python

(just like a NetID for a Cornellian)
§ Cannot ever change
§ Has no meaning; only identifies

10

id1

x 2

y 3

z 5

Unique tab
identifier

Classes: user-defined types for Objects

• Values must have a type
§ An object is a value

§ Object type is a class

• Modules provide classes

• Example: shapes.py
§ Defines: Point3, Rectangle classes

11

id1

x 2

y 3

z 5

Point3

class name

For now, you just need to use (have) the file shapes.py; no need
to read its code yet. You can read the docstring though to learn
about the Point3 class.
Later in the course you will learn how to write such class files.

Storage in Python

• Global Space
§ What you “start with”
§ Stores global variables
§ Lasts until you quit Python

• Heap Space
§ Where “folders” are stored
§ Have to access indirectly

• Call Stack (with Frames)
§ Parameters
§ Other variables local to function
§ Lasts until function returns

id2p
Global Space

id2
Heap Space

f1

f2

Ca
ll

Fr
am

es

Call Stack

Global Space

13

Constructor: Function to make Objects
Calling a Constructor Function:
§ Format: class-name (arguments)
§ Example: Point3(0,0,0)
§ Makes new object (folder) w/a new id
§ returns folder id as value

Example:
>>> import shapes
>>> p = shapes.Point3(0,0,0)

id2p

instantiated object

id2

x 0

y 0

z 0

Point3

Heap Space

shapes shapes
Point3()
Rectangle()

import module
with Point3 class

Constructor is
a function.
Access via

module name.

SHOW IN
PYTHON
TUTOR !

http://cs1110.cs.cornell.edu/tutor/

Global Space

14

Making our drawings less busy
We won't always draw module
variables & module folders.
Just like we don't draw all the
built-in functions.
Speaking of which…

Example:
>>> import shapes
>>> p = shapes.Point3(0,0,0)

id2p

instantiated object

id2

x 0

y 0

z 0

Point3

Heap Space

shapes shapes
Point3()
Rectangle()

Global Space

15

id is real!
New Built-in Function id()

Sometimes instead of making
up an id#, we just use an
arrow.

Example:
>>> import shapes
>>> p = shapes.Point3(0,0,0)
>>> id(p)
4371417664
>>>

Variable stores
id not object

id2p

instantiated object

id2

x 0

y 0

z 0

Point3

Heap Space

Shows the
id of p

shapes shapes
Point3()
Rectangle()

Accessing Attributes

• Attributes are variables
that live inside of objects
§ Can use in expressions
§ Can assign values to them

• Format: ⟨variable⟩.⟨attribute⟩
§ Example: p.x
§ Look like module variables

• To evaluate p.x, Python:
1. finds folder with id stored in p
2. returns the value of x in that folder

16

id3

x 1

y 2

z 3

id3p
Point3

Global Space Heap Space

Accessing Attributes Example

Example:
p = shapes.Point3(1, 2, 3)
p.x = p.x + 3

17

id3

x 1

y 2

z 3

id3p
Point3

Global Space Heap Space

4/

Note: we haven't drawn the module variable "shapes" or the
module folder for "shapes" but they are technically there

Object Variables

• Variable stores object id
§ Reference to the object
§ Reason for folder analogy

• Assignment uses object id
§ Example:
p1 = shapes.Point3(0, 0, 0)
p2 = p1
§ Takes contents from p1
§ Puts contents in p2
§ Does not make new folder!

This is the cause of many mistakes when starting to use objects
18

id2p1 id2

x 0

y 0

z 0

Point3
id2p2

Global Space Heap Space

Attribute Assignment (Question)

>>> p = shapes.Point3(0,0,0)
>>> q = p
• Execute the assignments:

>>> p.x = 5
>>> q.x = 7

• What is value of p.x?

19

id4p

id4q

A: 5
B: 7
C: id4
D: I don’t know

id4

x 0

y 0

z 0

Point3

Global Space Heap Space

Call Frames and Objects (1)

• Objects can be altered in a
function call
§ Object variables hold ids!
§ Folder can be accessed from

global variable or parameter

• Example:

>>> p = shapes.Point3(1, 2, 3)

>>> incr_x(p)
21

incr_x 1

id5p id5

1
…

Point3

x

Global Space Heap Space

Call Stack (w/1 Frame)

id5 q

def incr_x(q):
q.x = q.x + 11

Call Frames and Objects (2)

• Objects can be altered in a
function call
§ Object variables hold ids!
§ Folder can be accessed from

global variable or parameter

• Example:

>>> p = shapes.Point3(1, 2, 3)

>>> incr_x(p)
22

incr_x 1

id5 q

Call Stack (w/1 Frame)

id5p id5

1 2
…

Point3

x

Global Space Heap Space

x

NONERETURN

def incr_x(q):
q.x = q.x + 11

Call Frames and Objects (3)

• Objects can be altered in a
function call
§ Object variables hold ids!
§ Folder can be accessed from

global variable or parameter

Example:

>>> p = shapes.Point3(1, 2, 3)

>>> incr_x(p)
23

Call Stack (empty)

id5p id5

1 2
…

Point3

x

Global Space Heap Space

x

def incr_x(q):
q.x = q.x + 11

incr_x 1

id5 q

NONERETURN

How Many Folders (Question)

24

Draw everything that gets
created (excluding the module
variable & module folder).
How many folders get drawn?

import shapes
p = shapes.Point3(1,2,3)
q = shapes.Point3(3,4,5)

What Else Gets Drawn? (Question)

26

import shapes
p = shapes.Point3(1,2,3)
q = shapes.Point3(3,4,5)

Draw everything that gets
created (excluding the module
variable & module folder).
What else gets drawn?

26

Point3
x 1

y 2

z 3

id1

Heap Space

Point3
x 3

y 4

z 5

id2

Swap Attributes (Question)

import shapes
p = shapes.Point3(1,2,3)
q = shapes.Point3(3,4,5)

def swap_x(p, q):
1 t = p.x
2 p.x = q.x
3 q.x = t

swap_x(p, q)

28

id1p

id2q

Point3
x 1

y 2

z 3

id1

Heap Space Global Space

Point3
x 3

y 4

z 5

id2
What is in p.x at the
end of this code?
A: 0 D: 3
B: 1 E: I don’t know
C: 2

CORRECT

Point3
x 3

y 4

z 5

id2

Global p (Question)

35

import shapes
p = shapes.Point3(1,2,3)
q = shapes.Point3(3,4,5)

def swap(p, q):
1 t = p
2 p = q
3 q = t

swap(p, q)

id1p

id2q

Point3
x 1

y 2

z 3

id1

Heap Space Global Space

What is in global p after
calling swap?
A: id1
B: id2 D: 2
C: 1 E: I don’t know

Methods: a special kind of function

Methods are:
• Defined for specific classes
• Called using objects of that class

variable.method(arguments)
Example:
>>> import shapes

>>> u = shapes.Point3(4,2,3)

>>> u.greet()

“Hi! I am a 3-dimensional point located at (4,2,3)”

>>>

id3

x 4
y 2

z 3

id3u

Point3

42Where else have you seen this??

Heap Space

Global Space

Recall: String Methods

• s1.upper()
§ Returns returns an upper

case version of s1

• s.strip()
§ Returns a copy of s with

white-space removed at
ends

43

• s1.index(s2)
§ Returns position of the

first instance of s2 in s1
§ error if s2 is not in s1

• s1.count(s2)
§ Returns number of times
s2 appears inside of s1

Built-in Types vs. Classes

Built-in types

• Built-into Python

• Refer to instances as values

• Instantiate with simple

assignment statement

• Can ignore the folders

Classes

• Provided by modules

• Refer to instances as objects

• Instantiate with assignment

statement with a constructor

• Must represent with folders

44

Where To From Here?

• First, understand objects
§ All Python programs use objects
§ Most small programs use objects of classes

that are part of the Python Library

• Eventually, create your own classes:
§ the heart of OO Programming
§ the primary tool for organizing Python programs

• But we need to learn more basics first!
45

