
Lecture 6:
Specifications & Testing

(Sections 4.9, 9.5)
CS 1110

Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2022sp

• We strongly encourage you to look at the
last_name_first function in the Python
tutor.

• Now try to fix the function implementation!

Lecture Afterthoughts

2

3Please, no cell phones during lecture

Welcome!
• 1-on-1s are happening and they are awesome!

§ Sign up on CMS
• A1 goes out tonight! (many pages, but big figures)

• Academic Integrity Policy:
§ You can talk to each other
§ Do not show anyone (except staff) your code

• Do not post your code to Ed Discussions

§ Do not look at anyone else's code
§ The Full Policy:
https://www.cs.cornell.edu/courses/cs1110/2022sp/policies/cs1110integrity.html

Announcements

4

• Raise your hand for a notecard!

• Raise both hands for the catchBox!

Asking Questions in Lecture

5

Recall the Python API

https://docs.python.org/3/library/math.html

6

Function
name

inputs

What the function
evaluates to

• This is a specification
§ How to use the function
§ Not how to implement it

• Write them as docstrings

def greet(name):
"""Greets the person called name
followed by conversation starter.

<more details could go here>

name: the person to greet
Precondition: name is a string"""
print('Hello '+name+'!')
print('How are you?')

Anatomy of a Specification (1)

7

Short description,
followed by blank line

As needed, more detail in
1 (or more) paragraphs

Parameter description

Precondition specifies
assumptions we make
about the arguments

welcome.py

def get_campus_num(phone_num):
"""Returns the on-campus version
of a 10-digit phone number.

Returns: str of form "X-XXXX"

phone_num: number w/area code
Precondition: phone_num is a 10
digit string of only numbers"""

return phone_num[5]+"-"+phone_num[6:10]

Anatomy of a Specification (2)

8

Short description,
followed by blank line

Information about
the return value

Parameter description

Precondition specifies
assumptions we make
about the arguments

campus.py

A Precondition Is a Contract (1)

If the
precondition is

met,
the function

will work!

>>> import campus

>>> campus.get_campus_num("6072554444")

'5-4444'

>>> campus.get_campus_num("6072531234")

'3-1234'
9

def get_campus_num(phone_num):
"""Returns: str of form "X-XXXX"
phone_num: number w/area code
Precondition: phone_num is a 10
digit string of only numbers"""

return phone_num[5]+ "-" + phone_num[6:10]

campus.py

A Precondition Is a Contract (2)

If the
precondition is

not met…
Sorry, no

guarantees!
>>> import campus
>>> campus.get_campus_num(6072531234)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "/Users/bracy/campus.py", line 7, in

get_campus_num
return phone_num[5]+ "-" + phone_num[6:10]

TypeError: 'int' object is not subscriptable
10

def get_campus_num(phone_num):
"""Returns: str of form "X-XXXX"
phone_num: number w/area code
Precondition: phone_num is a 10
digit string of only numbers"""

return phone_num[5]+ "-" + phone_num[6:10]

Precondition
violated:

error message!

A Precondition Is a Contract (2)

If the
precondition is

not met…
Sorry, no

guarantees!
>>> import campus
>>> campus.get_campus_num("607-255-4444")
'5-5-44'

11

def get_campus_num(phone_num):
"""Returns: str of form "X-XXXX"
phone_num: number w/area code
Precondition: phone_num is a 10
digit string of only numbers"""

return phone_num[5]+ "-" + phone_num[6:10]

Precondition
violated:

NO
error message!

Software Bugs occur if

• Precondition is not documented properly
§ Easy to be unaware of assumptions we make

• Function use violates the precondition
§ Easy to think we're using a function properly, even if

we're not

12

NASA Mars Climate Orbiter

13

Source: NASA

Sources: Wikipedia & CNN

“NASA lost a $125 million
Mars orbiter because a

Lockheed Martin
engineering team used

English units of
measurement while the
agency's team used the

more conventional metric
system for a key

spacecraft operation...”
lost September 23, 1999

Preconditions Make Expectations Explicit

14

In American terms:
Preconditions help

assign blame.
Something went wrong:

Engine breaks down.

Did you give the function a bad argument?
Did you put the wrong kind of fuel in the car?

OR
Was the function implemented/specified wrong?
Did the fuel tank ask for the wrong kind of fuel?

Was the engine simply poorly built?

Basic Terminology

• Bug: an error in a program. Expect them!
§ Conceptual & implementation

• Debugging: the process of finding bugs and
removing them

• Testing: the process of analyzing and running a
program, looking for bugs

• Test case: a set of input values, together with
the expected output

15

Get in the habit of writing test cases for a function
from its specification

– even before writing the function itself!

Test cases help you find errors

def vowel_count(word):
"""Returns: number of vowels in word.

word: a string with at least one letter & only letters"""
pass # nothing here yet!

16

Some Test Cases
§ vowel_count('Bob’)

Expect: 1
§ vowel_count('Aeiuo’)

Expect: 5
§ vowel_count('Grrr’)

Expect: 0

More Test Cases
§ vowel_count('y’)

Expect: 0? 1?
§ vowel_count('Bobo’)

Expect: 1? 2?

Test Cases can help you find errors in the
specification as well as the implementation.

Representative Tests

• Cannot test all inputs
§ “Infinite” possibilities

• Limit ourselves to tests
that are representative
§ Each test is a significantly

different input
§ Every possible input is

similar to one chosen
• An art, not a science

§ If easy, never have bugs
§ Learn with much practice

17

Representative Tests for
vowel_count(w)

• Word with just one vowel
§ For each possible vowel!

• Word with multiple vowels
§ Of the same vowel
§ Of different vowels

• Word with only vowels

• Word with no vowels

Representative Tests Example

Representative Tests:
>>> import name
>>> name.last_name_first(‘Katherine Jones’)

Expects: ‘Jones, Katherine'
>>> name.last_name_first(‘Katherine Jones’)

Expects: ‘Jones, Katherine'
19

def last_name_first(full_name):
"""Returns: copy of full_name
in form <last-name>, <first-name>

full_name: a string with the form <first-name> <last-name>
with one or more blanks between the two names"""
space_index = full_name.index(' ')
first = full_name[:space_index]
last = full_name[space_index+1:]
return last+', '+first

Look at precondition
when choosing tests

name.py

• Right now to test a function, we:
§ Start the Python interactive shell

§ Import the module with the function

§ Call the function several times to see if it works right

• Super time consuming! L
§ Quit and re-enter python every time we change module

§ Type and retype…

• What if we wrote a script to do this ?!

Motivating a Unit Test

20

cornellasserts module

• Contains useful testing functions
• To use:

§ Download from course website (one of
today’s lecture files)

§ Put in same folder as the files you wish to test

21

def assert_equals(expected, received):
"""Quit program if `expected` and

`received` differ"""

• A unit test is a script that tests another module. It:
§ Imports the module to be tested (so it can access it)

§ Imports cornellasserts module (supports testing)

§ Defines one or more test cases that each includes:

• A representative input

• The expected output

§ Test cases call a cornellasserts function:

Unit Test: A Special Kind of Script

22

import name # The module we want to test
import cornellasserts # Module that supports testing

First test case
result = name.last_name_first(‘Katherine Jones')
cornellasserts.assert_equals(‘Jones, Katherine', result)

Second test case
result = name.last_name_first('Katherine Jones')
cornellasserts.assert_equals('Jones, Katherine', result)

print(‘All tests of the function last_name_first passed’)

Testing last_name_first(full_name)

23

Actual output
Input

Expected output Quits Python if actual and
expected output not equal

Prints only if no errorsnametest.py

Organizing your Test Cases

• We often have a lot of test cases
§ Common at (good) companies
§ Need a way to cleanly organize them

Idea: Bundle all test cases into a single test!
§ One high level test for each function you test
§ High level test performs all test cases for function
§ Also uses some print statements (for feedback)

24

One Test to Rule them All
import cornellasserts
import name
import campus

def test_last_name_first():
"""Calls all the tests for last_name_first"""
print('Testing function last_name_first’)
Test Case 1
result = name.last_name_first('Katherine Jones')
cornellasserts.assert_equals('Jones, Katherine', result)
Test Case 2
result = name.last_name_first('Katherine Jones')
cornellasserts.assert_equals('Jones, Katherine', result)

Execution of the testing code
test_last_name_first()
print(‘All tests of the module name passed’)

No tests happen if you
forget to call the function

25

Put all test cases
inside one
function

name_campus_test.py

Debugging with Test Cases (Question)
def last_name_first(full_name):

"""Returns: copy of full_name in the form <last-name>, <first-name>

full_name: has the form <first-name> <last-name>
with one or more blanks between the two names""“
#get index of space after first name
space_index = full_name.index(' ')
#get first name
first = full_name[:space_index]
#get last name
last = full_name[space_index+1:]
#return “<last-name>, <first-name>”
return last+', '+first

last_name_first('Katherine Jones’) gives 'Jones, Katherine'
last_name_first('Katherine Jones’) gives ' Jones, Katherine'

Which line is
“wrong”?
A: Line 1
B: Line 2
C: Line 3
D: Line 4
E: I don't know

1

2

3

4

26

How to debug

Do not ask:
“Why doesn’t my code do what I want it to do?”
Instead, ask:
“What is my code doing?”

Two ways to inspect your code:
1. Step through your code, drawing pictures (or use

python tutor if possible)
2. Use print statements to reveal intermediate program

states—variable values
28

Take a look in the python tutor!
def last_name_first(full_name):

get index of space
space_index = full_name.index(' ')
get first name
first = full_name[:space_index]
get last name
last = full_name[space_index+1:]
return “<last-name>, <first-name>”
return last+', '+first

last_name_first(“Katherine Johnson”)

29

Pay attention to:
• Code relevant to the failed test case
• Code you weren’t 100% sure of as you wrote it

Using print statement to debug
def last_name_first(full_name):

get index of space
space_index = full_name.index(' ')
print('space_index = '+ str(space_index))
get first name
first = full_name[:space_index]
print('first = '+ first)
get last name
last = full_name[space_index+1:]
print('last = '+ last)
return “<last-name>, <first-name>”
return last+', '+first

30
How do I print this?

Sometimes this
is your only

option, but it
does make a
mess of your

code, and
introduces cut-n-

paste errors.

