
Lecture 5: Strings
(Sections 8.1, 8.2, 8.4, 8.5, 

1st paragraph of 8.9)
CS 1110

Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2022sp

• We strongly recommend you step through the original and 
the fixed versions of the String Extraction example (starts 
slide 21) in the Python Tutor.

• Step through the original and fixed versions of the 
Extraction Puzzle (starts slide 26) which we did not have 
time for today.

• These are hard examples that we don't expect you to write 
just yet. The goal is to expose you to what is possible.

Lecture Afterthoughts

2

3Please, no cell phones during lecture

Welcome! Announcements
• Zoom link still works, but in person works better!
• Assignment schedule is now up!

• https://www.cs.cornell.edu/courses/cs1110/2022sp/schedule/

• This Week: in-person Labs! Yay!
§ Meet your TAs! They will walk around, offer tips!

• Administrative questions about your lab?
§ Email your Lab TA (not cs1110-staff), include your lab #

• 1-on-1s are coming soon!
§ meet with a staff member to help just you with course 

material. Past students have enjoyed these individual 
sessions!

§ Note: not for assignment help

First things first

• Let’s go back and visit slides 43-46 from 
previous lecture

5

Today

• More about the str type
§ This is where Ptyhon SHINES
§ New ways to use strings

• More examples of functions
§ Functions with strings!

6



Strings
• Strings are indexed
• Access characters with [] — called "string slicing"

7

>>> s = "abc d"
>>> s[0]
'a'
>>> s[4]
'd'
>>> s[0:2]
'ab'
>>> s[2:]
'c d'
>>> s[5]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: string index out of range

s "abc d"

as b c d
0 1 2 3 4

Two ways of drawing:

orexcludes c

Question 1

8

A: 'lo a'
B: 'lo'
C: 'lo '
D: 'o '
E: I do not know

>>> t = 'Hello all'
>>> t[3:6]
...

Global Space

Ht e l l o
0 1 2 3 4

a l l
5 6 7 8

What does this 
expression evaluate to?

Question 2

10

A: 'all'
B: 'l'
C: 'Hel'
D:  Error!
E: I do not know

>>> t = 'Hello all'
>>> t[:3]
...

Global Space

Ht e l l o
0 1 2 3 4

a l l
5 6 7 8

What does this 
expression evaluate to?

Other Things We Can Do With Strings
Operator s1 in s2
• Tests if    s1 “a part of”  s2

(or a substring of)

• Evaluates to a bool

Examples:
>>> s = 'abracadabra'

>>> 'a' in s

True

>>>  'cad' in s

True

>>>  'foo' in s

False

Built-in Function len(s)
§ Value is # of chars in s

§ Evaluates to an int

Examples:
>>> s = 'abracadabra’

>>> len(s) 

11

>>> len(s[1:5])

4

>>> s[1:len(s)-1]

'bracadabr'

>>>

12

Defining a String Function

Want to write function 
middle, which returns the 
middle 3rd of a string (length 
divisible by 3).

How we want it to behave:
>>> middle('abc')
'b'
>>> middle('aabbcc')
'bb'
>>> middle('aaabbbccc')
'bbb'

13

Important Questions:
1. What are the parameters?
2. What is the return value?
3. What goes in the body?

def middle(text):

???

return middle_third

Steps to writing a program

1. Work an instance yourself
2. Write down exactly what you just did
3. Generalize your steps from 2
4. Test your steps
5. Translate to Code
6. Test program
7. Debug (if necessary)

14



Steps to writing a program

1. Work an instance yourself
2. Write down exactly what you just did
3. Generalize your steps from 2
4. Test your steps
5. Translate to Code
>>> middle('abc')
>>> middle('aabbcc')
>>> middle('It was the best of times, it was the worst of times, it was the age of 
wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of 
incredulity, it was the season of Light, it was the season of Darkness, it was the spring of 
hope, it was the winter of despair, we had everything before us, we had nothing before us, 
we were all going direct to Heaven, we were all going direct the other way…') 15

middle_third = text[2:4]

middle_third = text[1] Too easy!!
Still too 
easy!!

Definition of middle
def middle(text):

"""Returns: middle 3rd of text
Param text: a string with length divisible by 3"""

16

IMPORTANT:
Precondition requires that arguments to 

middle have length divisible by 3. 

If not? Bad things could happen, and we 
blame the user (not the author) of the function.

Advanced String Features: Method Calls

Format: <string name>.<method name>(x,y,…)
s1.index(s2) 

§ returns position of the first instance of s2 in s1
§ error if s2 is not in s1

s1.count(s2) 
§ returns number of times s2 appears inside of s1

s.strip()
§ returns a copy of s with white-space removed at ends

s1.upper()
§ returns an upper case version

See Python Docs for more

String Methods index, count, strip 

19

>>> s = 'abracadabra’
>>> s.index('a')
0
>>> s.index('rac')
2
>>> s.count('a')
5
>>> s.count('b')
2
>>> s.count('x')
0
>>> '  a b '.strip()
'a b'

a b r a c
0 1 2 3 4

a 
5

d
6

a
7

b
8

r
9

a
10

s

Why not just  <method name>() ?

20

a b r a c
0 1 2 3 4

a 
5

d
6

a
7

b
8

r
9

a
10

s

>>> s = 'abracadabra’
>>> index(s,5)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'index' is not defined

index is not directly known to Python. 
This is a string method. Need to access it via a string.
(More details on this when we discuss classes.)

String Extraction Example

def firstparens(text):
"""Returns: substring in ()
Uses the first set of parens

Param text: a string with ()"""

>>> s = 'One (Two) Three'

>>> firstparens(s)

'Two'

>>> t = '(A) B (C) D'

>>> firstparens(t)

'A'

21



Steps to writing a program

1. Work an instance yourself
2. Write down exactly what you just did
3. Generalize your steps from 2
4. Test your steps
5. Translate to Code
6. Test program
7. Debug (if necessary)

23

Think of all the corner cases
What could possibly go wrong?

String Extraction, Testing reveals a problem
def firstparens(text):

"""Returns: substring in ()
Uses the first set of parens

Param text: a string with ()"""

# Find the open parenthesis 
start = text.index('(')

# Find the close parenthesis 
end = text.index(‘)’)

inside = text[start+1:end]

return inside

>>> s = 'One (Two) Three'

>>> firstparens(s)

'Two'

>>> t = '(A) B (C) D'

>>> firstparens(t)

'A'

>>> v = 'A) B (C) D'

>>> firstparens(v)

24

Works! Are we done?

Uh oh….
We assumed the first close paren would
come after the first open paren, but 
technically it doesn’t have to….

String Extraction, a better version
def firstparens(text):

"""Returns: substring in ()
Uses the first set of parens

Param text: a string with ()"""

# Find the open parenthesis 
start = text.index('(')

# Store part AFTER paren
substr = text[start+1:]

# Find the close parenthesis 
end = substr.index(')')

inside = substr[:end]
return inside

25

>>> s = 'One (Two) Three'

>>> firstparens(s)

'Two'

>>> t = '(A) B (C) D'

>>> firstparens(t)

'A'

>>> v = 'A) B (C) D'

>>> firstparens(v)

Extraction Puzzle
def second(thelist):

"""Returns: second word in a list

of words separated by commas, with 
any leading or trailing spaces
from the second word removed

Ex: second('A, B, C') => 'B'
Param thelist: a list of words
with at least two commas """

start = thelist.index(',')

tail = thelist[start+1:] 

end = tail.index(',')

result = tail[:end]

return result

Is there an error?

A: Yes, Line 1
B: Yes, Line 2
C: Yes, Line 3
D: Yes, Line 4
E: There is no error 26

1
2
3
4
5

Extraction Puzzle
def second(thelist):

"""Returns: second word in a list

of words separated by commas, with 
any leading or trailing spaces
from the second word removed

Ex: second('A, B, C') => 'B'
Param thelist: a list of words
with at least two commas """

start = thelist.index(',')

tail = thelist[start+1:] 

end = tail.index(',')

result = tail[:end]

return result

Is there an error?

A: Yes, Line 1
B: Yes, Line 2
C: Yes, Line 3
D: Yes, Line 4
E: There is no error 27

1
2
3
4
5

>>> second('cat, dog, pig, lion'
expecting: 'dog'
get: ' dog'

>>> second('apple, pear, banana'
expecting: 'pear'
get: ' pear'

Extraction Fix #1
def second(thelist):

"""Returns: second word in a list

of words separated by commas, with 
any leading or trailing spaces
from the second word removed

Ex: second('A, B, C') => 'B'
Param thelist: a list of words
with at least two commas """

start = thelist.index(',')

tail = thelist[start+1:] 

end = tail.index(',')

result = tail[:end]

return result

28

>>> second('cat, dog, pig, lion'
expecting: 'dog'
get: ' dog'

>>> second('apple, pear, banana'
expecting: 'pear'
get: ' pear'

tail = thelist[start+2:]

What if there are multiple
(or no! ) spaces?

1
2
3
4
5



Extraction Fix #2 (the better fix)
def second(thelist):

"""Returns: second word in a list

of words separated by commas, with 
any leading or trailing spaces
from the second word removed

Ex: second('A, B, C') => 'B'
Param thelist: a list of words
with at least two commas """

start = thelist.index(',')

tail = thelist[start+1:] 

end = tail.index(',')

result = tail[:end]

return result

29

>>> second('cat, dog, pig, lion'
expecting: 'dog'
get: ' dog'

>>> second('apple, pear, banana'
expecting: 'pear'
get: ' pear'

result = tail[:end].strip()

1
2
3
4
5


