L ecture 4:

Detfining Functions
(Ch.3.4-3.11)

CS 1110
Introduction to Computing Using Python

Cornell Bowers C1S
Computer Science

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2022sp

Lecture Aftertho

We added a new slide (#10) to address the question

of print vs return. See also this discussion on Ed:
https://edstem.org/us/courses/19140/discussion/1
084754 °?comment=2472733

The lecture concluded with slide 42

We will cover slides 43-45 at the beginning of the
next lecture.

We strongly suggest you check out the Python Tutor! .

https://edstem.org/us/courses/19140/discussion/1084754?comment=2472733
http://cs1110.cs.cornell.edu/tutor/

Announcements

« Zoom polls not appearing, and not using
browser?
= "3 little icon shows up on the bottom ...

sometimes you have to click it to see the
poll."(Thanks, CS1110 student for the tip!)

From Last Time: Function Calls

« Function calls have the form:
best function ever(x,y,..)

/

Nname

- Arguments: values given as inputs

= Separated by commas
= Can be any expression

A function might have 0, 1, ... or many arguments

Let’s define our own functions!

Anatomy of a Function Definition

Python

function name function parameters

keyword
\\ / _ /(variables for storing input)
def increment(n): |function header

Returns: the value of n+1

\ Docstring

specification

The return Statement

Passes a value from the function to the caller
Format: return <expression>

Any function body statements placed after a
return statement will be ignored

Optional (if absent, special value None will be
sent back)

Organization of a Module

E simple math.py e Function definition goes
before any code that calls

def increment(n): that function

)\ return n+l e There can be multiple

function definitions

e Can organize function

increment(2)
definitions in any order

simple_math.py

Function Definitions vs. Calls

!

\

i gﬁmple_math.py

def increment(n):

return n+l

increment(2)

simple_math.py

;

Function definition

Defines what function will do
Declaration of parameters (n in this
case)

Parameter: variable where input to
function is stored

Command to do the function
Argument to assign to function
parameter (Argument 2 to be assigned
to parameter n in this case)
Argument: an input value to assign to
the function parameter when it is called

Executing the script simple _math. py

C:/> python simple math.py

simple_math.py Python skips

“""script that defines,
and calls one simple
math function™""

Python skips

Python learns about

def increment(n): ‘// the function
e Returns: Nel""" Python skips everything
return n+l - inside the function until
the function is called
|x = increment(2) <«—— Python executes this statement
(Now, python executes

return vs.print

https://edstem.org/us/courses/19140/discussion/1084754?comm

ent=2472733

simple math.py

"""script that defines
and calls one simple
math function"""

def increment(n):

"""Returns: n+1

return n+l

\x = increment(2)

C:/> python simple math.py

simple_mé%h.py

C:/> \\\

Notice that this script does not
print anything!

The function returns the value
(it gets saved in x) but does not
print it.

If you want the function to also
print to the screen, it needs a
print statement. 10

https://edstem.org/us/courses/19140/discussion/1084754?comment=2472733

Understanding How Functions Work

- We draw pictures to show what is in memory

. Call Frame: representation of function call

e Line number of the next statement in the
Draw parameters as function body to execute

variables (named boxes) o Starts with 15t statement in function body
|

)) N 4
function name instruction counter

parameters

local variables (later in lecture)

Not just a pretty picture!
The information in this picture depicts exactly what is stored in
memory on your computer.

Note: slightly different than in the book (3.9) Please do it this way.

11

Example: get feet inheight.py module

>>> import height
>>> height.get feet(68)

L _—

hggght.py

1| def get feet(ht _in_inches):
2 return ht_in _inches // 12

_ —

heigh;ipy

12

Example: get feet(68) (slide 1)

>>> import height
>>> height.get feet(68)

PHASE 1: Set up call frame

1. Draw a frame for the call

2. Assign the argument value
to the parameter (in frame)

3. Indicate next line to execute

next line to execute

AN

get feet

ht _in_inches

N\

2

68

hggght.py

1] def get feet(ht _in_inches)

2 return ht_in _inches // 12

P

—

heigh;ipy

13

Example: get feet(68) (slide 2)

>>> import height
>>> height.get feet(68)

PHASE 2:
Execute function body

Return statement creates——]

a special variable for result

The return terminates;
no next line to execute

AN

get feet

_—» RETURN

ht _in_inches

5

N

z

68

hggght.py

1| def get feet(ht _in_inches):

— "

2 lr‘etur‘n ht in_inches // 12

P

heigh;ipy

14

Example: get feet(68) (slide 3)

>>> import height

>>> height.get feet(68)~
5

>>>

PHASE 3: Delete (cross out)
call frame

Python interactive mode

_~ evaluates the expression and reports

pd
get feet ;{
ht in_imChes |68
RETURN | 5
7

hggght.py

1| def get feet(ht _in_inches):

2 lr‘etur‘n ht in_inches // 12

P

— —

heigh;ipy

15

Local Variables (1)

Call frames can contain “local” variables

= Avariable created in the function
>>> import height2
>>> height2.get feet(68)

get feet

ht in_inches

638

hgﬂyWQ.pj'

’def get feet(ht _in_inches):
1| oot ht_in _inches // 12
’) return feet

L —

heighEi.py

e

16

Local Variables (2)

Call frames can contain “local” variables

>>> import height2
>>> height2.get feet(68)

get feet

ht in_inches

feet

638

hgﬂyWQ.pj'

’def get feet(ht _in_inches):
1 _feet = ht_in_inches // 12
’) return feet

L —

heighEi.py

e

17

Local Variables (3)

Call frames can contain “local” variables

>>> import height2
>>> height2.get feet(68)

get feet

ht in_inches
feet

RETURN

174

68

hgﬂyﬁz.pj'

’def get feet(ht _in_inches):
1 feet = ht_in _inches // 12

’) detur‘n feet

—

L

heighEi.py

e

18

Local Variables (4)

Call frames can contain “local” variables

/
get feet ff&{
>>> 1mport height2 ht in inche< |68
>>> height2.get feet(68
g get_ (68) let o
> — Python interactive mode
>>> evaluates the expression and reports ETURN >
height2.py
/Va riables are\
’def get feet(ht _in inches): gone!
1 feet = ht _in inches // 12 This function
’) return feet IS over.
— L Y

heighEi.py

1
2

3

Exercise #1

Function Definition

Function Call

def foo(a,b):

return x*y+y

>>> f00(3,4)

-~

\

What does the
frame look like

at the start?

~

J

20

Which One is Closest to Your Answer?

B:

foo

21

Exercise #2

Function Definition Function Call
def foo(a,b): >>> foo(3,4)
1 X = a B:
2 y = b foo 1
3 return x*y+y a | 3 b | 4

[What is the next step? }

23

Which One is Closest to Your Answer?

foo

X2

B:

24

Exercise Time (no poll, just discuss)

Function Definition Function Call
def foo(a,b): >>> foo(3,4)
X = a
y = b foo X2
return x*y+y a | 3 b | 4
X | 3

[What is the next step? }

26

Exercise #3

Function Definition Function Call
def foo(a,b): >>> foo(3,4)
1 X = a
2 y = b foo /113
3 return x*y+y a | 3 b | 4

[What is the next step? }

27

Which One is Closest to Your Answer?

foo 173 B: | foo A73
a| 3 4
RETURN 16 B i
RETURN 16
foo 173 | ||P: |foo
N\
a| 3 4 QQ&‘
S\2
X | 3 4 O\ﬁﬂ
o
RETURN 16 (,%O

28

Exercise Time (no poll, just discuss)

Function Definition Function Call
def foo(a,b): >>> foo(3,4)
X = a
y = b foo Az
return x*y+y a | 3 b | 4
X | 3 y | 4
RETURN | 16

[What is the next step? }

1
2

3

Exercise Time

Function Definition

Function

Call

def foo(a,b):
X = a
y = b
return x*y+y

>>> f00(3,4)
>>> 16

/
foo Iﬂafi
a | 3 b /£
x3/{4

[///EETURN 16

/

31

Global Space

=the purple box we previously labeled
“What Python can access directly”

« Top-most location in memory

. Variables in Global Space called
Global Variables

 Functions can access anything
global space (see next slides)

C:\> python
>>> X = 7
>>>

Global Space

int()
float()
str()
type()
print()

X |7

32

Call Stack

=the place in memory where the Call Frames live

Functions can only access the Global Space
variables in their Call Frame or 7"

the Global Space. |
This is the Call Frame for the Call Stack
function foo. It is created in foo

response to a function call and

al| 3 b| 4

lives on the Call Stack, distinct
from the Global Space.

>>> foo(3,4) 3

Function Access to Global Space (1)

height3.py

—

INCHES PER_FT = 12
def get feet(ht _in_inches):

—

feet = ht_in_inches // INCHES PER_FT

return feet

> W N

ol

get feet(68)
print(answer)

answer =

o

)

C:\> python height3.py

Global Space

print()

Python just started.
It has all the built-in
functions.

It hasn’t read any of
the module yet.

34

Function Access to Global Space (2)

o O

-hwlx)ll—l

height3.py

INCHES PER_FT = 12
def get feet(ht _in_inches):

feet = ht_in_inches // INCHES PER_FT

return feet

get feet(68)
print(answer)

answer =

)

Global Space

print()

INCHES PER_FT

12

L

Python just read line 1 of the module.
Avariable has been added to the
Global Space.

35

Function Access to Global Space (3)

A W DN =

o O

=

height3.py

INCHES PER_FT = 12
def get feet(ht _in_inches):

feet = ht_in_inches // INCHES PER_FT

return feet

get feet(68)
print(answer)

answer =

)

Python just read line 2 of the module.

Global Space

print()

INCHES PER_FT
get feet()

12

A new function has been added to the Global Space.
Note: python has not yet looked inside the function.

36

Function Access to Global Space (4)

height3.py

INCHES_PER_FT = 12

deflget_feet(ht_in_inches):
feet = ht _in_inches // INCHES PER_FT

return feet

D W N B

ol

answer = get feet(68)
print(answer)

o

)

L

To execute the assignment statement on
line 5, Python needs to evaluate the RHS.
Python creates a call frame for the function,
which lives on the Call Stack.

Global Space

print()

INCHES PER_FT
get feet()

12

Call Stack (w/1 frame)

get feet

3

ht _in_inches

68

37

Function Access to Global Space (5)

W N B

o O

+...‘;eet
return feet

height3.py

INCHES PER_FT = 12
def get feet(ht _in_inches):

ht_in_inches // INCHES_PER_FT

get feet(68)
print(answer)

answer

)

L

Python has just executed line 3.
A new local variable feet has been created
inside get_feet’s Call Frame.

Global Space
print()
fNCHES_PER_FT 12
get feet()

Call Stack
get feet Z>(4
ht _in_inches 68
feet 5

38

Function Access to Global Space (6)

height3.py

INCHES _PER_FT = 12
def get feet(ht _in_inches):
3 feet = ht_in_inches // INCHES PER_FT

ZHe’cur‘n feet

5
6

answer = get feet(68)
print(answer)

)

L

Python has just executed line 4.
A return value has been created.

Global Space
print()
fNCHES_PER_FT 12
get feet()
Call Stack
get feet 6(/(
ht _in_inches 68
feet 5
RETURN | 5

39

Function Access to Global Space (7)

D W N B

6

ﬁnswer = get feet(68)
print(answer)

height3.py |

INCHES PER FT = 12
def get feet(ht _in_inches):
feet = ht_in_inches // INCHES PER_FT

return feet

Python has just executed line 5.

A new global variable answer has been created.
The call frame for get_feet has been deleted.

Global Space
print()
fNCHES_PER_FT 12
get feet()
answer 5
Call Stack /
get feet %
ht_in_inche 68
fee 5
RETURN | 5

40

Function Access to Global Space (8)

height3.py

INCHES PER_FT = 12
def get feet(ht _in_inches):

D W N B

return feet

5| answer = get feet(68)

ﬁ Erint(answer)

feet = ht_in_inches // INCHES PER_FT

)

Python has just executed line 6.

C:\> python height3.py
5

Global Space
print()
iNCHES_PER_FT 12
get feet()
answer 5
Call Stack /
get feet ;2(
ht_in_inche 68
fee 5
RETURN | 5

41

Function Access to Global Space (9)

height3.py]

1| INCHES PER FT = 12

2 |def get feet(ht _in_inches):

3 feet = ht_in_inches // INCHES PER_FT

4| return feet Python has completed
executing all lines of the

5[answer = get_feet(68) module. Python is no

6| print(answer) longer running, so the

— global space is gone.
You can type a new

command at the
command line now.

C:\> python height3.py
5
C:\> 42

Q: what about this??

What if a local variable inside
a function has the same name
as a global variable?

Global Space

feet |[“plural of foot”

height5.py get feet(

Call Stack (w/ 1 frame)
get feet 1

def get feet(ht in inches):

feet = ht _in inches // 12

return feet

ht in_inches| 68

—

C:\> python

>>> feet = “plural of foot”
>>> import height5

>>> height5.get feet(68) 43

A: Look, but don’t touch!

Can’t change global variables in a
function! Assighment to a global
makes a new local variable!

Global Space

feet |[“plural of foot”

get feet(
|

Call Stack (w/ 1 frame)
1l __fget = ht_in_inches // 12 get feet 12
2 return feet

heiéBtS.py

def get feet(ht_in _inches):

ht in_inches| 68

—

feet | 5

C:\> python

>>> feet = “plural of foot”
>>> import height5

>>> height5.get_feet(68) 44

Use Python Tutor to help visualize

Lots of code for today:

https://www.cs.cornell.edu/courses/cs1110/2022
sp/schedule/lecture/lec04/lec04.html

Paste it into the Python Tutor
(http://cs1110.cs.cornell.edu/tutor/#mode=edit)

« Visualize the code as is

« Change the code

= Try something new!
= Insert an error! (misspell ht_in_inches or feet)

- Visualize again and see what is different 45

https://www.cs.cornell.edu/courses/cs1110/2022sp/schedule/lecture/lec04/lec04.html
http://cs1110.cs.cornell.edu/tutor/

f

Call Frames and Global Variables

‘# bad_gagpjby
def swap(a,b):

globals a & b"""

tmp = a
a=>
b = tmp
a =1
b = 2
swap(a,b)

Bad attempt at swapping

—_—

Question: Does this work?

What exactly gets swapped
with function swap?

Paste this into the Python
Tutor and see for yourself!

46

e ——m —

More Exercises (1)

Module Text

Python Interactive Mode

\

def

.# my_module.E&

foo(x):
return x+1

1+2
3*x

>>> import my_module
\ >>> my_module.Xx

: What does Python}
give me?

A: 9

B: 10

C:1

D: Nothing
E: Error

47

More Exercises (2)

Function Definition Function Call
silly.py >>> import silly
\ >>> X = 2
>>> fo0(3,4)
\de'F foo(a,b): SSS <[What does j
X = a Python give me?
y — b A: 2
B:3
return x*y+
yry C: 16
D: Nothing

E:1do not know

49

More Exercises (3)

Module Text

Python Interactive Mode

>>> import module
>>> module.x

module.py

def foo(x):

: What does Python}
give me?

A: 9

B: 10

C:1

D: Nothing
E: Error

51

More Exercises (4)

Module Text Python Interactive Mode
|4 module.py >>> import module
>>> module.Xx
def foo(x): i[Whatc.:loesP)?/thon}
give me:
X = 142
| X = 3*X A: 9
B: 10
C:1
X = foo(0) D: Nothing
E: Error

More Exercises (5)

Module Text

Python Interactive Mode

moahle.py

def foo(x):
X = 142
X = 3*x

return x+1

X = foo(0)

>>> import module
>>> module.x

: What does Python}
give me?

A: 9

B: 10

C:1

D: Nothing
E: Error

55

