
Lecture 2:
Variables & Assignments

(2.1-2.3,2.5, 2.6 or videos (see Schedule))

CS 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2022sp

https://www.cs.cornell.edu/courses/cs1110/2022sp/schedule/lecture/lec02/lec02.html
http://www.cs.cornell.edu/courses/cs1110/2022sp

Lecture 2:
Variables & Assignments

(Sections 2.1-2.3,2.5, 2.6)

http://www.cs.cornell.edu/courses/cs1110/2022sp

Have pencil and paper (or stylus and tablet) ready. We'll
do visualization exercises that involve drawing diagrams
today.

Recommendations for note taking:
- Print out posted lecture slides and write on them
- Have the slides pdf ready and annotate electronically

http://www.cs.cornell.edu/courses/cs1110/2022sp

There were many questions about what certain
operators do (/, //, %). You do not need to memorize
their behavior. We want you to know about them so
that when the need arises, you can make use of them.

Similarly, we want you to know that operator
precedence exists so you can understand how Python
works. Instead of memorizing these slides, you can
reference the exact ordering when it matters to the
code you are writing.

Lecture Afterthoughts

3

http://www.cs.cornell.edu/courses/cs1110/2022sp/staff/
Ed Discussions. Online forum to ask/answer questions
Consulting/Office Hours.
• See calendar for which are 1-on-1 help (managed by

QueueMeIn") versus "public help" (all students there form a
single audience)

Prof Office Hours (on same calendar)
• After lecture: public help.
• Bookable 1-on-1 appointments with Professor Bracy
• Bookable 1-on-1 appointments with Professor Lee

AEW (ENGRG 1010). "Academic Excellence Workshops"
• Optional discussion course that runs parallel to this

class. See website for more info

Helping you succeed in this class

4

HandoutSlide

http://www.cs.cornell.edu/courses/cs1110/2022sp/staff/
https://bracy.youcanbook.me/
https://llee-oh-appts.youcanbook.me/

Activity 1: if you aren't passing the "banner" question, get help
with your installation! In the meantime, you can add the following
string to your answer to get the system to accept it:
Python 3.x Anaconda

Activity 2: the password is:
learn.by.testing.hypotheses

(no spaces, all one "word", period separators)

Activity 3:
Q3: add the name of Python's behavior to your answer:

short circuit evaluation
Q8: password:

shortcircuit (no spaces)

Lab 1 Activities

5

Which of the following is false?
A type…
(a) is a set of values & operations on these values
(b) represents something
(c) can be determined by using type() in

Python
(d) can be changed by using type() in Python
(e) determines the meaning of an operation

If there are multiple false answers,
pick one!

After Lecture 1: Types & Expressions
Before Lecture 2: Variables & Assignments 6

Type: set of values & operations on them
From last time: Types

7

HandoutSlide

Type float:
• Values: real numbers
• Ops: +, -, *, /,//, **,%
Type int:
• Values: integers
• Ops: +, -, *, //, %, **
Type bool:
• Values: True, False
• Ops: not, and, or

Type str:
• Values: strings
• Double quotes: "abc"
• Single quotes: 'abc'

• Ops: + (concatenation)

<name of type>(<value>)

converts value 2 to type float

converts value 2.6 to type int

…different from:
type(<value>)
which tells you the type

Converting from one type to another

8

>>> float(2)
2.0

>>>int(2.6)
2

>>>type(2)
<class 'int'>

aka "casting"

(A) turn 2.6 into the integer 2,
then calculate 1/2 à 0.5
(B) turn 2.6 into the integer 2,
then calculate 1//2 à 0
(C) turn 1 into the float 1.0,
then calculate 1.0/2.6 à

0.3846…
(D) Produce a TypeError
telling you it cannot do this.
(E) Exit Python

What does Python do?

9

>>> 1/2.6

From a narrower type to a wider type
(e.g., int à float)

Python does automatically if needed:
• Example: 1/2.0 evaluates to a float: 0.5

Note: does not work for str
• Example: 2 + "ab" produces a TypeError

Widening Conversion (OK!)

10

Width refers to information
capacity. “Wide” à more

information capacity

From narrow to wide:
boolà intà float

From a wider type to a narrower type
(e.g., float à int)

• causes information to be lost
• Python never does this automatically

What about:
>>> 1/int(2.6)
0.5
Python casts the 2.6 to 2 but / is a float division,
so Python casts 1 to 1.0 and 2 to 2.0

Narrowing Conversion (is it OK???)

11

You Decide:
• What is the right type for my data?
• When is the right time for conversion (if any)

• Zip Code as an int?
• Grades as an int?
• Lab Grades as a bool?
• Interest level as bool or float?

Types matter!

12

What is the difference between:
2*(1+3) 2*1 + 3

Operations performed in a set order
• Parentheses make the order explicit

What if there are no parentheses?
à Operator Precedence: fixed order to

process operators when no parentheses

Operator Precedence

13

add, then multiply multiply, then add

HandoutSlide

Precedence of Python Operators
• Exponentiation: **

• Negation : –

• Binary arithmetic: * / // %

• Binary arithmetic: + –

• Comparisons: < > <= >=

• Equality relations: == !=

• Logical not

• Logical and

• Logical or

• Precedence goes downwards
§ Parentheses highest
§ Logical ops lowest

• Same line = same precedence
§ Read "ties" left to right

(except for **)
§ Example: 1/2*3 is (1/2)*3

• Section 2.5 in your text

• See website for more info

• Part of Lab 1
14

HandoutSlide

151/31/17Variables & Assignments

Operators and Type Conversions

Operator Precedence
Exponentiation: **
Negation: –
Binary arithmetic: * / %
Binary arithmetic: + –
Comparisons: < > <= >=
Equality relations: == !=
Logical not
Logical and
Logical or

Evaluate this expression:
7 + 3.0 / 3

A. 3
B. 3.0
C. 3.333333335
D. 8
E. 8.0

161/31/17Variables & Assignments

Operators and Type Conversions

Operator Precedence
Exponentiation: **
Negation: –
Binary arithmetic: * / %
Binary arithmetic: + –
Comparisons: < > <= >=
Equality relations: == !=
Logical not
Logical and
Logical or

Evaluate this expression:
7 + 3.0 / 3

1.0
7 + 1.0

8.0

An assignment statement:
• takes an expression
• evaluates it, and
• stores the value in a variable

New Tool: Variable Assignment

17

variable

expression
equals sign
(just one!)

evaluates to 5

Example:
x = 4 + 1

Executing Assignment Statements
>>> x = 5
>>>

• But something did happen!
• Python assigned the value 5 to the variable x
• Internally (and invisible to you):

18

Press ENTER and…

Hmm, looks like nothing happened…

x

memory location
stored value

5

>>> terminal time >>>

Retrieving Variables in Interactive Mode

>>> x = 5
>>> x
5
>>>

19

Press ENTER and…

Interactive mode tells me the value of x

>>> terminal time >>>

In More Detail: Variables (Section 2.1)
• A variable

§ is a named memory location (box)
§ contains a value (in the box)

• Examples:

20

5x Variable x, with value 5 (of type int)

20.1area Variable area, w/ value 20.1 (of type float)

Variable names
must start with a
letter (or _).

The type belongs
to the value, not
to the variable.

HandoutSlide

In More Detail: Statements
>>> x = 5
>>>

• This is a statement, not an expression
§ Tells the computer to DO something (not give a value)
§ Typing it into >>> gets no response (but it is working)

21

Press ENTER and…

Hm, looks like nothing happened…

Expressions vs. Statements

Expression

• Represents something
§ Python evaluates it
§ End result is a value

• Examples:
§ 2.3
§ (3+5)/4
§ x == 5

Statement

• Does something
§ Python executes it
§ Need not result in a value

• Examples:
§ x = 2 + 1
§ x = 5

Value

Complex Expression

22

HandoutSlide

Look so similar
but they are not!

• Draw boxes on paper:
>>> x = 5

• New variable declared?
>>> y = 3

Write a new box.

• Variable updated?
>>> x = 7

Cross out old value. Insert new value.

Keeping Track of Variables

23

5x
3y

7

1. Evaluate the RHS expression, x + 2
• For x, use the value in variable x
• What value doe the RHS expression evaluate to?

2. Store the value of the RHS expression in x
in variable names on LHS, x
• Cross off the old value in the box
• Write the new value in the box for x

Task: Execute the Statement: x = x + 2

24

5x

HandoutSlide

Start with variable x having value 5. Draw it on paper:

25

A.

5 7x

Which one is closest to your answer?

C. 5x

B.
5x

D.

¯_(ツ)_/¯

7x

7x

x = x + 2

Begin with this:

1. Evaluate the expression 3.0*x+1.0
2. Store its value in x

Execute the Statement: x = 3.0*x+1.0

27

7x

29

A.

Which one is closest to your answer?

C.

B.

D.

¯_(ツ)_/¯

x = 3.0*x+1.0

7 22.0x

7x
22.0x

7x
22.0x

The command: x = 3.0*x+1.0

"Executing the command":
1. Evaluate right hand side 3.0*x+1.0
2. Store the value in the variable x's box

• Requires both evaluate AND store steps
• Critical mental model for learning Python

Executing an Assignment Statement

31

Have variable x already from previous
Create a new variable:

>>> rate = 4

Execute this assignment:
>>> rate = x / rate

Exercise 1: Understanding Assignment

32

22.0x

4rate

34

A.

Which one is closest to your answer?

C.

B.

D.

¯_(ツ)_/¯ rate = x / rate

22.0 5.5x
4 5.5

E.

22.0x
4 5rate

22.0x
4 5.5

22.0x
4 rate
5.5raterate

rate

Python is a dynamically typed language
• Variables can hold values of any type
• Variables can hold different types at

different times

The following is acceptable in Python:
>>> x = 1
>>> x = x / 2.0

Alternative: a statically typed language
• Examples: Java, C
• Each variable restricted to values of just one type

Dynamic Typing

36

ç x contains an int value
ç x now contains a float value

HandoutSlide

Begin with:

Execute this assignment:
>>> rat = x + rate

Did you do the same thing as your
neighbor ? If not, discuss.

Exercise 2: Understanding Assignment

37

22.0x
5.5rate

39

A.

Which one is closest to your answer?

C.

B.

D.

¯_(ツ)_/¯ rat = x + rate

22.0 27.5x
5.5rate

E.

22.0x
5.5 rate
27.5rat

22.0x
5.5 27.5rate

22.0x
5.5 rate
27.5rat

Command: type(<value>)

Can test a variable:
>>> x = 5
>>> type(x)
<class 'int'>

Can test a type with a Boolean expression:
>>> type(2) == int
True

More Detail: Testing Types

41

HandoutSlide

