
RECURSION REVIEW



DEFINITION: WHAT 

IS RECURSION?

 Recursion is using a recursive 

function.

 What is a recursive function:

 A function that calls itself

 Main idea: want to break the 

problem into two cases:

 A simple case (our base case)

 A complex case (recursive 

case), which we will make 

simpler and then call function

Recursion in 

Ithaca!

Shoutout to 

Prof. Lee for 

the picture!



EXAMPLE ONE: RECURSION WITH INTEGERS
LET'S CODE THIS TOGETHER



EXAMPLE TWO: RECURSION WITH DOLLS
IF YOU WANT ANOTHER EXAMPLE, LET'S CODE THIS TOGETHER



IN THIS PRESENTATION

How Recursion Works (Call Frames) How to Develop Recursive Function

All students learn in different ways; you may find one or both of these explanations helpful!

sum_to_num 5 7 

n 3

Divide and Conquer



CALL FRAMES WITH RECURSION

Let's use call frames to see how sum_to_num() runs to completion.

Code Global Space Call Stack

https://pythontutor.com/visualize.html#code=def%20sum_to_num%28n%29%3A %0A %20%20%20%20%22%22

%22%20%0A%20%20%20%20DocString%0A %20%20%20%20%22%22%22%0A %20%20%20%20if %20n%20%3

D%3D%201%3A%0A%20%20%20%20%20%20%20%20return%201%0A %20%20%20%20else%3A %0A %20%20

%20%20%20%20%20%20return%20n%20%2B%20sum_to_num%28n-

1%29%0A%20%20%20%20%20%20%20%20%0Ay%20%3D %20sum_to_num%283%29&cumulative=false&hea

pPrimitives=nevernest&mode=edit&origin=opt-

frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

Python Tutor Link

https://pythontutor.com/visualize.html


CALL FRAMES WITH RECURSION

Let's use call frames to see how sum_to_num() runs to completion.

Code Global Space Call Stack

sum_to_num 5 

n 3



CALL FRAMES WITH RECURSION

Let's use call frames to see how sum_to_num() runs to completion.

Code Global Space Call Stack

sum_to_num 5 7 

n 3



CALL FRAMES WITH RECURSION

Let's use call frames to see how sum_to_num() runs to completion.

Code Global Space Call Stack

sum_to_num 5 7 8 

n 3



CALL FRAMES WITH RECURSION

Let's use call frames to see how sum_to_num() runs to completion.

Code Global Space Call Stack

sum_to_num 5 7 8 

n 3

sum_to_num 5 

n 2

Notice: 

we 

"pause" 

this call



CALL FRAMES WITH RECURSION

Let's use call frames to see how sum_to_num() runs to completion.

Code Global Space Call Stack

sum_to_num 5 7 8 

n 3

sum_to_num 5 7 

n 2



CALL FRAMES WITH RECURSION

Let's use call frames to see how sum_to_num() runs to completion.

Code Global Space Call Stack

sum_to_num 5 7 8 

n 3

sum_to_num 5 7 8 

n 2



CALL FRAMES WITH RECURSION

Let's use call frames to see how sum_to_num() runs to completion.

Code Global Space Call Stack

sum_to_num 5 7 8 

n 3

sum_to_num 5 7 8 

n 2

sum_to_num 5 

n 1

Now, we 

"pause" 

this call



CALL FRAMES WITH RECURSION

Let's use call frames to see how sum_to_num() runs to completion.

Code Global Space Call Stack

sum_to_num 5 7 8 

n 3

sum_to_num 5 7 8 

n 2

sum_to_num 5 6 

n 1



CALL FRAMES WITH RECURSION

Let's use call frames to see how sum_to_num() runs to completion.

Code Global Space Call Stack

sum_to_num 5 7 8 

n 3

sum_to_num 5 7 8 

n 2

sum_to_num 5 6 

n 1 RETURN 1



CALL FRAMES WITH RECURSION

Let's use call frames to see how sum_to_num() runs to completion.

Code Global Space Call Stack

sum_to_num 5 7 8 

n 3

sum_to_num 5 7 8 

n 2

sum_to_num 5 6 

n 1 RETURN 1

Send this return 

to function 

call above



CALL FRAMES WITH RECURSION

Let's use call frames to see how sum_to_num() runs to completion.

Code Global Space Call Stack

sum_to_num 5 7 8 

n 3

sum_to_num 5 7 8 

n 2

sum_to_num 5 6 

n 1 RETURN 1

RETURN 3

Note: line 8 says to 

return 2 + 

sum_to_num(1).

We found 

sum_to_num(1) is 1

So, return 2 + 1

So, return 3



CALL FRAMES WITH RECURSION

Let's use call frames to see how sum_to_num() runs to completion.

Code Global Space Call Stack

sum_to_num 5 7 8 

n 3

sum_to_num 5 7 8 

n 2

sum_to_num 5 6 

n 1 RETURN 1

RETURN 3

Send this return 

to function 

call above



CALL FRAMES WITH RECURSION

Let's use call frames to see how sum_to_num() runs to completion.

Code Global Space Call Stack

sum_to_num 5 7 8 

n 3

sum_to_num 5 7 8 

n 2

sum_to_num 5 6 

n 1 RETURN 1

RETURN 3

RETURN 6

Note: line 8 says to 

return 3 + 

sum_to_num(2).

We found 

sum_to_num(1) is 3

So, return 3 + 3

So, return 6



CALL FRAMES WITH RECURSION

Let's use call frames to see how sum_to_num() runs to completion.

Code Global Space Call Stack

sum_to_num 5 7 8 

n 3

sum_to_num 5 7 8 

n 2

sum_to_num 5 6 

n 1 RETURN 1

RETURN 3

RETURN 6y 6



ANY QUESTIONS ABOUT DIAGRAMING 

RECURSION?

NEXT TOPIC: DEVELOPING RECURSION



DEVELOPING RECURSION: THREE STEPS (DIVIDE AND CONQUER)

 Step 1: Decide and code your base case(s)

 This is your simplest case(s)

 Step 2: Develop your recursive part

 Break up data into two "parts"

 Multiple ways to do this!

 Both "parts" should be smaller than original input

 Call function on these "parts'"

 Step 3: Combine these outputs

 Must assume smaller answers are correct

Assuming smaller answers 

are correct helps up 

develop the function. See 

"Recursion Fairy"



STEP 1: WHAT'S 

OUR BASE CASE?

 First step of any recursive call = 

decide on a base case

 Ways to do this = ask yourself:

 What is the simplest input I can 

get?

 How can I handle this simple input 

by myself (most likely with just a 

return or simple calculation)?

 Are there more than one simple 

cases? Note: sometimes there 

are.

In this function, our base 

case was here!



STEP 1: WHAT'S OUR BASE CASE?

 If you don't have a base case, your 

function will never finish!

 When we drew the call frames for 

sum_to_num(3), the call ran until we 

reached our base case; then we started 

returning

 If we have no base case, the function will 

repeat forever because you don't tell it 

when to stop.

 Then Python gets mad...

But, why do I need a base case?



VISUALIZE: RECURSION WITHOUT BASE CASE

Let's see what happens when we remove the base case to sum_to_num

Code Global Space Call Stack

sum_to_num 5 

n 2



VISUALIZE: RECURSION WITHOUT BASE CASE

Let's see what happens when we remove the base case to sum_to_num

Code Global Space Call Stack

sum_to_num 5 

n 2

sum_to_num 5 

n 1



VISUALIZE: RECURSION WITHOUT BASE CASE

Let's see what happens when we remove the base case to sum_to_num

Code Global Space Call Stack

sum_to_num 5 

n 2

sum_to_num 5 

n 1

sum_to_num 5 

n 0

What you're thinking:

"Uh...but we said n should 

always be positive, Python..."



VISUALIZE: RECURSION WITHOUT BASE CASE

Let's see what happens when we remove the base case to sum_to_num

Code Global Space Call Stack

sum_to_num 5 

n 2

sum_to_num 5 

n 1

sum_to_num 5 

n 0

What you're thinking:

"Wait, Python stop!" sum_to_num 5 

n -1



VISUALIZE: RECURSION WITHOUT BASE CASE

Let's see what happens when we remove the base case to sum_to_num

Code Global Space Call Stack
sum_to_num 5 

n 2

sum_to_num 5 

n 1

sum_to_num 5 

n 0

sum_to_num 5 

n -1

sum_to_num 5 

n -2

What you're 

thinking:

"PYTHON 

STOP!"



STEP 1: WHAT'S OUR BASE CASE?

 But, Python can't stop

 You didn't give it a base case

 So, Python doesn't know when to 

stop.

 So, keep Python happy: include a 

base case

Please 

don't make 

us recurse 

forever

We'll tell you 

"Maximum Recursion 

Depth Exceeded" if 

you do. 



STEP 2: DEVELOP RECURSIVE PART
 In this step, we need to decide how 

to divide our input

 Often many ways to divide

 Sometimes type of division depends 

on type of the input

 Then, call the function on these 

parts

 The part you call the function on 

must ALWAYS be "smaller" than 

our original input!

 Small means closer to termination, not 

just smaller value; see note to left for 

more information

Part 1: just the original number. 

This is smaller because we want to 

add all numbers from 1 to n. n is 

just one of these number. 

However, we require that the piece 

in sum_to_num is smaller than n.

Part 2: Notice we call 

sum_to_num on a smaller 

input than n (we call it on n-1), 

meaning our input gets closer 

to the base case.



STEP 2: DEVELOP RECURSIVE PART

 Like when we forget a base case, the 

function will not be able to terminate.

 In this case, Python has a something that 

tells it to "stop" (a base case) but since we 

just call the function on the same n over 

and over, it never reaches that base case.

 Thus, Python recurses "forever"

 And gets angry again

But, why do I need to call the function 

on a smaller input?

We're angry 

again!!!



Objects

 Sometimes, objects contain a smaller part. For 

instance, each doll object may contain a doll. If it 

does, that doll is a "smaller doll."

Integers

STEP 2: DEVELOP RECURSIVE PART

How to split different types of inputs

Both Examples 

Are From Lecture13

 To make an integer smaller, subtracting or 

dividing comes to mind. This is how we make an 

integer smaller for recursion.



Strings

 Slicing Strings is a common way to split them. 

We can slice the string into halves or make one 

part really small (just the first character) and the 

other part really big (the rest of the string)

Lists

STEP 2: DEVELOP RECURSIVE PART

How to split different types of inputs

 Like strings, we can also slice lists. However, 

another common method is to use a for loop to 

get parts of a list. Notice, in the line of code

for item in t_list:

 item will store each part of the list. Thus, item is 

the "part" of the list we want to (perhaps) call the 

function on.

 We will do an example of this in a few slides.

This is from Lecture 13



STEP 3: COMBINE THE OUTPUTS
 Once we finish splitting the input and calling the function 

on these inputs, we must combine the outputs together.

 This is sometimes hard to do.

 Students ask many questions like:

 How do I know what the function gives me back?

 What is the type of the return value of the function?

 How do I combine values when I don't know what they are

To do this, we usually "assume" our function works 

properly, reading the specification to tell us what the 

output will be.

We can also use the "Recursion Fairy"

We combined our 

inputs here.



STEP 3: COMBINE THE OUTPUTS

 It is hard to combine the "parts" from step 2.

 We assume the function works correctly.

 Or, assume the "Recursion Fairy" takes a function call and returns the correct answer for 

you, meaning you can assume the answer is correct while writing your code.

"Recursion Fairy"

Recall num_dolls():



STEP 3: COMBINE THE OUTPUTS

 Let's say we had the code below.

 How do we combine 1 and num_dolls(doll.innerDoll)?

"Recursion Fairy"

What goes 

here?



STEP 3: COMBINE THE OUTPUTS

 Recursion Fairy swoops in and tells us what the value 

of num_dolls(doll.innerDoll) will be according to the 

spec.

 According to the Fairy, this out will be the number of 

dolls inside doll.innerDoll, including doll.innerDoll.

 Thus, the output will be an integer

 We assume the function will do what we want!

 So, how should we combine 1 and 

num_dolls(doll.innerDoll)?

"Recursion Fairy"



EXAMPLE THREE: RECURSION OVER LISTS
LET'S CODE THIS TOGETHER



EXAMPLE FOUR: RECURSION OVER STRINGS
TRY THE SLICING METHOD!



YOU TRY THIS FUNCTION!!!



EXAMPLE FOUR: RECURSION OVER STRINGS
LET'S GO OVER THIS FUNCTION TOGETHER NOW



EXAMPLE FIVE: RECURSION OVER LISTS PT. 2
YOU CAN TRY THE SLICING METHOD FOR THIS!



YOU TRY THIS FUNCTION!!!



EXAMPLE FIVE: RECURSION OVER LISTS PT. 2
LET'S GO OVER THIS FUNCTION TOGETHER NOW



ANY QUESTIONS?

THANK YOU ALL FOR COMING!



PHOTO CITES

 Thinking-Recursively-in-Python_Watermarked.1825397c00ea.jpg

 napoleon_defeats.gif

 hand-paint-fairy-watercolor-vector-silhouette-illustration-magic-wand-165888633.jpg

 Recursion fairy idea suggested by Jeff Erikson: https://cs.stackexchange.com/questions/30712/teaching-recursion

https://files.realpython.com/media/Thinking-Recursively-in-Python_Watermarked.1825397c00ea.jpg
https://www.napolun.com/mirror/napoleonistyka.atspace.com/img/napoleon_defeats.gif
https://thumbs.dreamstime.com/b/hand-paint-fairy-watercolor-vector-silhouette-illustration-magic-wand-165888633.jpg
https://cs.stackexchange.com/questions/30712/teaching-recursion

