RECURSION REVIEW

PRESENTED BY: NATALIE ISAK




DEFINITION: WHAT
IS RECURSION?

Recursion is using a recursive
function.

Recursion In
lthaca!

What is a recursive function:

A function that calls itself

Main idea: want to break the
problem into two cases:

A simple case (our base case)

A complex case (recursive : -
case), which we will make P Shoutout to
simpler and then call function ~ == { Prof. Lee for

the picture!




def sum_to num(n):
Wit Returns the value of the sum of numbers from 1 to up and including n
Returns (1 + 2 + ... + n-1 + n).

Precondition: n is a positive integer

EXAMPLE ONE: RECURSION WITH INTEGERS

LET'S CODE THIS TOGETHER



def num _dolls(doll):
"HiReturns: number of nesting dolls this doll contains, including itself.
Example: if "doll that contains one Doll in it, but that inner
doll does not contain any Dolls, then this function returns 2.

Precondition: doll is a Doll object (not None).

EXAMPLE TWO: RECURSION WITH DOLLS

IF YOU WANT ANOTHER EXAMPLE, LET'S CODE THIS TOGETHER



=

W ~NOUT A WN P

IN THIS PRESENTATION

How Recursion Works (Call Frames)

Hef sum_to_num(n):
DocString
if n ==

return 1
else:

return n + sum_to_

sum_to_num

n 3

All students learn in different ways; you may find one or both of these explanations helpful!

How to Develop Recursive Function

b

British-Grerman-He therland
Genmans

(Prussians)

WATERLOO
1815 l l %
-

i Germans
LAROTHIERE (Barvarians
1814 Wirknbersian)

& ThE

b \i ﬁit{ﬁ

af

Divide and Conquer




CALL FRAMES WITH RECURSION

Let's use call frames to see how sum_to_num() runs to completion.

return n + sum_to_num(n-1)

Code
1 Pef sum_to_num(n):
2 mmon
3 DocString
4 mmon
5 if n ==
(3) return 1
7 else:
8
9

1@y = sum_to_num(3)

Python Tutor Link

Global Space

Call Stack


https://pythontutor.com/visualize.html

=

CALL FRAMES WITH RECURSION

Let's use call frames to see how sum_to_num() runs to completion.

Code

Hef sum_to_num(n):
DocString

) ifn - 1:

return 1
else:
return n + sum_to_num(n-1)

S Weoeo~NOYUT A~ WNE

y = sum_to_num(3)

Global Space

Call Stack

sum_to_num

n 3




=

CALL FRAMES WITH RECURSION

Let's use call frames to see how sum_to_num() runs to completion.

Code

Hef sum_to_num(n):
DocString

if n == 1;
return 1

‘else:

return n + sum_to_num(n-1)

S Weoeo~NOYUT A~ WNE

y = sum_to_num(3)

Global Space

Call Stack

sum_to_num

n 3

y-




=

CALL FRAMES WITH RECURSION

Let's use call frames to see how sum_to_num() runs to completion.

Code

Hef sum_to_num(n):
DocString

if n == 1:
return 1
else:
return n + sum_to_num(n-1)

S Weoeo~NOYUT A~ WNE

y = sum_to_num(3)

Global Space

Call Stack

sum_to_num

n

3

B 7 &




CALL FRAMES WITH RECURSION

Let's use call frames to see how sum_to_num() runs to completion.

Code Global Space Call Stack
1 Hef sum_to_num(n): sum_to_num A / 8
2 mmn
3 DocString n 3
4 mmn
S mmpif n == 1:
6 return 1 Notice:
7 else: sum_to_num 5
8 return n + sum_to_num(n-1) We
9 - upausen n 2
10 y = sum_to_num(3) this call




CALL FRAMES WITH RECURSION

Let's use call frames to see how sum_to_num() runs to completion.

Code Global Space Call Stack
1 Hef sum_to_num(n): sum_to_num A / 8
2 mmn
3 DocString n 3
4 mmn
5 if n == 1:
6 return 1
7 ‘else: sum_to_num BT
8 return n + sum_to_num(n-1) n >
9

10 y = sum_to_num(3)




CALL FRAMES WITH RECURSION

Let's use call frames to see how sum_to_num() runs to completion.

Code Global Space Call Stack
1 Hef sum_to_num(n): sum_to_num A / 8
2 mmn
3 DocString n 3
4 mmn
5 if n == 1:
6 return 1
7 else: sum_to_num U 8
g ‘retur‘n n + sum_to_num(Cn-1) . 2
10 y = sum_to_num(3)




CALL FRAMES WITH RECURSION

Let's use call frames to see how sum_to_num() runs to completion.

Code Global Space Call Stack
1 Hef sum_to_num(n): sum_to_num A / 8
2 mmmn
3 DocString n 3
4 mmn
5‘11‘ n == 1:
6 return 1
v else: Now, we sum_to_num ZA 8
8 return n + sum_to_num(n-1) "pause” n 5
9 this call
10 y = sum_to_num(3)
sum_to_num 5
n 1
|




CALL FRAMES WITH RECURSION

Let's use call frames to see how sum_to_num() runs to completion.

Code Global Space Call Stack
1 Hef sum_to_num(n): sum_to_num A 7 8
2 mmn
3 DocString n 3
4 mmn
5 if n == 1:
6 eturn 1
7 else: sum_to_num Z/ 8
8 return n + sum_to_num(n-1) . 2
9
10 y = sum_to_num(3)

sum_to_num }! 6

n 1




CALL FRAMES WITH RECURSION

Let's use call frames to see how sum_to_num() runs to completion.

Code Global Space Call Stack
1 Hef sum_to_num(n): sum_to_num A 7 8
2 mmn
3 DocString n 3
4 mmn
5 if n == 1:
6 return 1
v ﬂe SB- sum_to_num ZA 8
8 return n + sum_to_num(n-1) . 2
9
10 y = sum_to_num(3)

sum_to_num }! i

n 1 RETURN 1




=

CALL FRAMES WITH RECURSION

Let's use call frames to see how sum_to_num() runs to completion.

Code
1 Pef sum_to_num(n):
2 mmn
3 DocString
4 mmn
5 if n == 1:
6 return 1
7 else:
8 —r'etur'n n + sum_to_num(n-1)
9
@ y = sum_to_num(3)

Global Space

Send this return
to function
call above

Call Stack
sum_to_num lé / 8
n 3
sum_to_num Z/ 8

n




1

1
2
3
4
5
6
I4
8
9
0

CALL FRAMES WITH RECURSION

Let's use call frames to see how sum_to_num() runs to completion.

Code

Hef sum_to_num(n):
DocString
if n ==

return 1
else:

—r'etur'n n + sum_to_num(n-1)

y = sum_to_num(3)

Global Space

Note: line 8 says to
return 2 +
sum_to_num(1).

We found
sum_to_num(1)is 1

So, return2 +1

So, return 3

Call Stack
sum_to_num lé / 8
n 3
sum_to_num Z/ ;
0 2 RETUR) 3
sﬁm_o_ 1! J?
n 1 TR 1




CALL FRAMES WITH RECURSION

Let's use call frames to see how sum_to_num() runs to completion.

Code Global Space Call Stack
1 Hef sum_to_num(n): sum_to_num A / 8
2 mmmn
3 DocString
4 mmn
5 if n == 1:
6 return 1 ,
- else: Send this r.eturn
8 —r'etur'n n + sum_to_num(n-1) to function
9 call above
10 y = sum_to_num(3)




1

1
2
3
4
5
6
I4
8
9
0

CALL FRAMES WITH RECURSION

Let's use call frames to see how sum_to_num() runs to completion.

Code

Hef sum_to_num(n):
DocString
if n ==

return 1
else:

—r'etur'n n + sum_to_num(n-1)

y = sum_to_num(3)

Global Space

Note: line 8 says to
return 3 +
sum_to_num(2).

We found
sum_to_num(1) is 3

So, return 3 + 3

So, return 6

Call Stack
sum_to_num 18 / ;
n 3 RETURN 6
sum To- ra;
n 2 RETUR 3




CALL FRAMES WITH RECURSION

Let's use call frames to see how sum_to_num() runs to completion.

Code Global Space Call Stack
Hef sum_to_num(n): sum_to_ A8 / 8

DocString y 6 il 3 6

if n == 1;
return 1

else: Sl 2!1” 11!
—r'etur'n n + sum_to_num(n-1) n 2 R 3

y = sum_to_num(3)

S Weoeo~NOYUT A~ WNE

=




ANY QUESTIONS ABOUT DIAGRAMING
RECURSION?

NEXT TOPIC: DEVELOPING RECURSION



DEVELOPING RECURSION: THREE STEPS (DIVIDE AND CONQUER)

= Step 1: Decide and code your base case(s)

= This is your simplest case(s)
= Step 2: Develop your recursive part

= Break up data into two "parts”

= Multiple ways to do this! Assuming smaller answers

are correct helps up
develop the function. See

= Call function on these "parts" "Recursion Fairy”

= Both "parts" should be smaller than original input

= Step 3: Combine these outputs

= Must assume smaller answers are correct



STEP 1: WHAT'S
OUR BASE CASE?

First step of any recursive call =
decide on a base case

Ways to do this = ask yourself:

What is the simplest input | can
get?

How can | handle this simple input
by myself (most likely with just a
return or simple calculation)?

Are there more than one simple
cases? Note: sometimes there
are.

1 Hef
2

3

4

5

6

/

8

9
10 y =

sum_to_num(n):

DocString

1f n == 1:
return 1
else:
return n + sum_to_num(n-1)

sum_to_num(3)
In this function, our base

case was herel



STEP 1: WHAT'S OUR BASE CASE?

But, why do | need a base case?

If you don't have a base case, your
function will never finish!

When we drew the call frames for
sum_to_num(3),the call ran until we
reached our base case; then we started
returning

If we have no base case, the function will
repeat forever because you don'ttell it
when to stop.

Then Python gets mad...




VISUALIZE: RECURSION WITHOUT BASE CASE

Let's see what happens when we remove the base case to sum_to_num

Code
def sum_to_num(n):
DocString

‘retur‘n n + sum_to_num(n-1)

NoOouU A WN B

y = sum_to_num(2)

Global Space

Call Stack

sum_to_num

n 2




VISUALIZE: RECURSION WITHOUT BASE CASE

Let's see what happens when we remove the base case to sum_to_num

Code Global Space Call Stack

sum_to_num S}

1 def sum_to_num(n):

2 TRIRL n 2

3 DocString

4 numn sum_to_num 5

5 ‘ return n + sum_to_num(n-1) ) T

6

/7 y = sum_to_num(2)




VISUALIZE: RECURSION WITHOUT BASE CASE

Let's see what happens when we remove the base case to sum_to_num

Call Stack

Code Global Space

sum_to_num 5

1 def sum_to_num(n):
2 nuan n 2
3 DocString
4 URIRL sum_to_num 5
5 ‘ return n + sum_to_num(n-1) n 1
6
/7y = sum_to_num(2) sum_to_num 5
n 0
What you're thinking:

"Uh...but we said n should
always be positive, Python..."




VISUALIZE: RECURSION WITHOUT BASE CASE

Let's see what happens when we remove the base case to sum_to_num

Code Global Space Call Stack
sum_to_num 5
1 def sum_to_num(n):
2 nuan n 2
3 DocString
4 URIRL sum_to_num 5
5 ‘retur‘n n + sum_to_num(n-1) n 1
(5]
/7 y = sum_to_num(2) sum_to_num 5
n 0
What you're thinking:
"Wait, Python stop!" sum_to_num 5
n -1
|




VISUALIZE: RECURSION WITHOUT BASE CASE

Let's see what happens when we remove the base case to sum_to_num

Code Global Space Call Stack
sum_to_num 5
1 def sum_to_num(n): n 2
2 mmmn
3 DocString sum_to_num 5
4 mmmn n 1
5 =P return n + sum_to_num(n-1 What you're
6 thinking;: sum_to_num 5
/7 y = sum_to_num(2) "PYTHON i -
]|
STO P ' sum_to_num 5
n -1
sum_to_num 5)
1l . [ 5 ]




STEP 1: WHAT'S OUR BASE CASE?

Please = But, Python can't stop

don't make

us recurse = You didn't give it a base case

forever

" S0, Python doesn't know when to

stop.
We'll tell you = So, keep Python happy: include a
"Maximum Recursion
Depth Exceeded" if base case

you do.



2

S Woo~NOYUT B WN PR

Hef sum_to_num(n):

y:

STEP 2: DEVELOP RECURSIVE PART

In this step, we need to decide how

IRIRL to divide our input
: = (Often many ways to divide
DocStr‘lng Part 2: Notice we call e
e sum_to_num on a smaller = Sometimes type of division depends
f —— 1 inputthan n (we call it on n-1), on type of the input
1 n == . meaning our input gets closer

return 1 to the base case. = Then, call the function on these

else: PEITES

return n + Sum_to_num(n_ 1) " The part you call the function on
Part 1: just the original number. Must ALWAYS be "smaller” than

3 This is smaller because we want to [EOIVIgeIgf{lgt=1RIgTolV)u!
sum_to_num( add all numbers from 1 ton. nis

just one of these number.
However, we require that the piece

=  Small means closer to termination, not
just smaller value; see note to left for
more information

insum_to_num is smallerthan n.



STEP 2: DEVELOP RECURSIVE PART

1 def sum_to_num(Cnh):

But, why do | need to call the function

2
on a smaller input? 3 DocString
= Like when we forget a base case, the ;' ﬁn o
function will not be able to terminate. 6 return 1
= In this case, Python has a something that ; else;etum n + sum_to_num(np
tells it to "stop” (a base case) but since we 9
10 y = sum_to_num(3)

just call the function on the same n over
and over, it never reaches that base case.

= Thus, Python recurses "forever"

= And gets angry again



STEP 2: DEVELOP RECURSIVE PART

How to split different types of inputs

Objects Integers
= Sometimes, objects contain a smaller part. For = To make an integer smaller, subtracting or
instance, each doll object may contain a doll. If it dividing comes to mind. This is how we make an
does, that doll is a "smaller doll." integer smaller for recursion.
def open doll(d): def blast off(n):
""sTnput: a Russian Doll """Input: a non-negative int

- |
Opens the Russian Doll d """ E?Tnts down from n to Blast-Off!

print("My name is "+ d.name)

i if (n == 09):

if d.hasSeam: print("BLAST OFF!")
inner = d.innerDoll else:
open_doll(inner) print(n)

else: )
i nt("That's it!" Both Examples blast_off(n-1)
print(*That’s itl") Are From Lecturel3




STEP 2: DEVELOP RECURSIVE PART

How to split different types of inputs

Strings _
. o . Lists
= Slicing Strings is a common way to split them.
We can slice the string into halves or make one = Like strings, we can also slice lists. However,
part really small (just the first character) and the another common method is to use a for loop to
other partreally big (the rest of the string) get parts of a list. Notice, in the line of code
def num_es(s): . for item in t_list;
"""Returns: # of 'e's in s"""
4_#1:1. Handle small data ) = jtem will store each part of the list. Thus, itemis
1 S == :
return @ the "part" of the list we want to (perhaps) call the
elif len(s) == 1: function on.
return 1 if s[@] == ‘e’ else @ _

# 2. Break into two parts = We will do an example of this in a few slides.

left = num_es(s[@])
right = num_es(s[1:])

# 3. Combine the result .
return left+right This is from Lecture 13




STEP 3: COMBINE THE OUTPUTS

= Once we finish splitting the input and calling the function

on these inputs, we must combine the outputs together. % Hef sum_to_num(n):
= This is sometimes hard to do. 2 DocString
= Students ask many questions like: 5 if n ==
6 return 1
= How do | know what the function gives me back? 7 else:
= What is the type of the return value of the function? g return n + sum_to_num(n-1)
= How do | combine values when | don't know what they are 10 y = sum_to_num(3)

®To do this, we usually "assume" our function works
properly, reading the specification to tell us what the
output will be.

We combined our

inputs here.

=We can also use the "Recursion Fairy"



STEP 3: COMBINE THE OUTPUTS

"Recursion Fairy"
It is hard to combine the "parts" from step 2.

We assume the function works correctly.

Or, assume the "Recursion Fairy" takes a function call and returns the correct answer for
you, meaning you can assume the answer is correct while writing your code.

def num_dolls(doll):
"""Returns: number of nesting dolls this doll contains, including itself.
Example: if "doll’ that contains one Doll in it, but that inner

F263(363|| num (j()llss()- doll does not contain any Dolls, then this function returns 2.

Precondition: doll is a Doll object (not None).




STEP 3: COMBINE THE OUTPUTS

"Recursion Fairy"

Let's say we had the code below.

How do we combine 1 and num_dolls(doll.innerDoll)?

def num_dolls(doll):
"""Returns: number of nesting dolls this doll contains, including itself.
Example: if "doll’ that contains one Doll in it, but that inner
doll does not contain any Dolls, then this function returns 2.

Precondition: doll is a Doll object (not None).

if not doll. :
return 1 What goes

else: here?
return 1 ___ num_dolls(doll.




STEP 3: COMBINE THE OUTPUTS

"Recursion Fairy" a | assume this function works

correct so

| | | ' will
Recursion Fairy swoops in and tells us what the value qum_dolls(doll.innerDoll) .
return an integer that represen

of num_dolls(doll.innerDoll) will be according to the the number of dolls in
Spec. doll.innerDoll plus that doll.

“\\

J

According to the Fairy, this out will be the number of
dolls inside doll.innerDoll, including doll.innerDoll.

def num_dolls(doll):
Returns: number of nesting dolls

ThUS, the OUtpUt WI” be an Integer Example: if “doll’ that contains one|
doll does not contain any Dolls, the
. . I
We assume the function will do what we want! T L £ 6 [l

So, how should we combine 1 and

if not doll.

num_dolls(doll.innerDoll)? e

else:
return 1 ___ num_dolls(doll.



def embed(theinput):
"""Returns: depth of embedding, or nesting, in theinput.

Examples:
"the dog that barked" -> 0
["the", "dog", "that", "barked"] — 1
["the" ["dog", "that", "barked"]] —> 2
["the" [[["dog"]], ["that", "barked"]] — 3
["the" ["dog", ["that", ["barked"]] —> 4
[[[["the"], "dog"], "that"], "barked"] —> 4

Precondition: theinput is a string, or a potentially nested
list of strings. No component list can be empty"""

EXAMPLE THREE: RECURSION OVER LISTS

LET'S CODE THIS TOGETHER



def prefix(s):
"""“"Returns the prefix (identical characters at the start) length of s
Example: prefix('abc') returns 1 as the prefix is 'a'
prefix('xxxxxxyzx') returns 6 as the prefix is "xxxxxx'
prefix('') returns @ as the string is empty
Precondition: s is a (possibly empty) string of lowercase letters"""

EXAMPLE FOUR: RECURSION OVER STRINGS

TRY THE SLICING METHOD!



YOU TRY THIS FUNCTION!!!



def prefix(s):
"""“"Returns the prefix (identical characters at the start) length of s
Example: prefix('abc') returns 1 as the prefix is 'a'
prefix('xxxxxxyzx') returns 6 as the prefix is "xxxxxx'
prefix('') returns @ as the string is empty
Precondition: s is a (possibly empty) string of lowercase letters"""

EXAMPLE FOUR: RECURSION OVER STRINGS

LET'S GO OVER THIS FUNCTION TOGETHER NOW



def decode(nlist):
"""Returns a string that represents the decoded nlist
The nlist is a list of lists, where each element 1s a character and
a number. The number is the number of times to repeat the character.

Example: decode([['a',3],['h',1],['a"',1]]) is 'aaaha’
Example: decode([]) is ''

Precondition: nlist is a (possibly empty) nested list of two-element lists,
where each list inside is a pair of a character and an integer"""

EXAMPLE FIVE: RECURSION OVER LISTS PT. 2

YOU CAN TRY THE SLICING METHOD FOR THIS!



YOU TRY THIS FUNCTION!!!



def decode(nlist):
"""Returns a string that represents the decoded nlist
The nlist is a list of lists, where each element 1s a character and
a number. The number is the number of times to repeat the character.

Example: decode([['a',3],['h',1],['a"',1]]) is 'aaaha’
Example: decode([]) is ''

Precondition: nlist is a (possibly empty) nested list of two-element lists,
where each list inside is a pair of a character and an integer"""

EXAMPLE FIVE: RECURSION OVER LISTS PT. 2

LET'S GO OVER THIS FUNCTION TOGETHER NOW



ANY QUESTIONS?

THANKYOU ALL FOR COMING!




PHOTO CITES

Thinking-Recursively-in-Python_Watermarked.1825397c00ea.jpg

napoleon_defeats.gif

hand-paint-fairy-watercolor-vector-silhouette-illustration-magic-wand-165888633.jpg

Recursion fairy idea suggested by Jeff Erikson: https://cs.stackexchange.com/questions/30712/teaching-recursion


https://files.realpython.com/media/Thinking-Recursively-in-Python_Watermarked.1825397c00ea.jpg
https://www.napolun.com/mirror/napoleonistyka.atspace.com/img/napoleon_defeats.gif
https://thumbs.dreamstime.com/b/hand-paint-fairy-watercolor-vector-silhouette-illustration-magic-wand-165888633.jpg
https://cs.stackexchange.com/questions/30712/teaching-recursion

