
SEQUENCES.
Collection of items which maintain their order.
Eg: Lists, Strings, Tuples, Dictionaries.

LIST.
An ordered sequence of items.
The order matters. The order is maintained with indices.
Created with [].

OPERATIONS ON AND PROPERTIES OF LISTS:
1. Accessing:

Typically, list variables hold addresses to the data/collection in memory,
not the data (elements) themselves. Hence they are represented in the heap
space.
Elements in a list are generally accessed using indices. The indices start at
0.

Examples. (my_list = [1, 2], (list_len = len(my_list))

my_list[0] >>> 1

my_list[-1] >>> 2

my_list[list_len - 1] >>> 2

Lists are also mutable. We can change the elements at particular indices. To
do this, we access the current element at our desired index and then set it to
a new value: will be very useful when talking about for-loops.

my_list[0] = 4 >>> my_list[4, 2]

2. Insertion:
We can insert an item into a list. The item can be inserted at any position in
the list. When we insert at the end of the list, we typically call it appending.

Methods.

my_list.insert(0, 3) >>> [3, 1, 2]

my_list.append(5) >>> [3, 1, 2, 5]

2. Slicing:
We can divide a list into sublists (which can even be the original list. Think
every set is a subset of itself)

Examples. (list_len = len(my_list)

half_list = my_list[:list_len]) => my_list[:2] >>> [3, 1]

3. Other operations: Addition, Reversals, Copying :
We can add 2 or more lists. The order of addition matters.
Eg:

[1, 2] + [3, 4] >>> [1, 2, 3, 4]

[3, 4] + [1, 2] >>> [3, 4, 1, 2]

We can reverse a list.
Eg:

rev_list1 = my_list.reverse() >>> [5, 2, 1, 3]

rev_list2 = my_list[::-1] >>> [5, 2, 1, 3]

Note:
Just assigning the list variable to another variable does not make a new
copy of the list. To make a new copy of an existing list use [::]. We call this
deep copy.
Eg: cpy_list = my_list : this will store in cpy_list an address to the same
list that my_list points to. Any change using cpy_list will also be registered
by my_list.

cpy_list = my_list[::] : this will create a new list for cpy_list. The new
list will contain the same elements in my_list but a change done to cpy_list
will not affect my_list and vice versa.

LOOPS.
A way to access the elements in a sequence. It is usually used for traversals
(passing through the sequence).
Why a loop?
Imagine we have a list of 500 elements and we want to keep the elements at
odd indices in a new list. A loop will provide an easy way to accomplish
this in less lines of code! We needn’t do :
new_list = [old_list[1], old_list[3], old_list[5].....]

LOOP VARIABLES.
In using loops, we need to track our progress- how far into the list we have
gone. We do this by using a loop variable. This loop variable determines
whether we should continue the process or not.

RANGE. range(n)
Range is an operator that returns a sequence(list) of numbers. It starts at 0
by default and goes to n-1. We can specify the start by throwing in another
argument: range(start, end). Not that it will return [start, start+1….., end-1].

We generally use the elements in the list returned by range as the indices
for our loop.
Eg:
my_letters = ["A", "B", "C"]

range(3) => [0, 1, 2]

We can create a mapping from range(3) to my_list since they have the same
length.

FOR-LOOPS.
For-loops is one type of loop. It takes a number of forms depending on the
kind of iteration you want to do.
We focus on 2 forms:

1. for each_item in my_list

2. for index in range(n)

for each_item in my_list.
Just as the name sounds! This format of the for-loop accesses each item of
your list.
Eg:

for letter in my_letters:

print(letter)

// Print only even numbers

for num in my_nums:

if (num % 2) == 0:

print(num)

Try and identify the loop variables.

for index in range(n).
It creates the appropriate list range(n). And the loops through that list.
Since we can establish a relation between an existing list and the list from
range(n), we can use the elements in the range(n) list as indices to access
the items in our list.
NB: n should be equal to the length of the list when we want to go
through the entire list.
Eg: my_nums = [10, 20, 30, 40], n_len = 4

for i in range(n_len):

print(my_nums[i])

What happens if we do : print(i) instead? What is the loop variable?

