
FINAL REVIEW
SESSION!

Presented By: Ian, Lenhard, Riya, Cornelius,
Derek, and Tif fany

IN THIS PRESENTATION

• Recursion

• For Loops

• While Loops

• String Slicing

• Testing/Debugging

• Searching/Sorting

ON THE EXAM BUT NOT IN THIS

PRESENTATION

• Call Frames

• Classes + Subclasses +

Inheritance

TOPICS FOR THE EXAM

STRING PROCESSING

STRING PROCESSING

• Use common string methods to also get pieces of a string

• Common methods are shown in a few slides

• We can also slice strings with bracket!

• What would x = s[3:] give us?

A S T R I N G

0 1 2 3 4 5 6
s =

STRING PROCESSING

• Use common string methods to also get pieces of a string

• Common methods are shown in a few slides

• We can also slice strings with bracket!

• What would x = s[3:] give us?

A S T

0 1 2
s =

R I N G

3 4 5 6

STRING PROCESSING

• What would x = s[3:] give us?

A S T R I N G

0 1 2 3 4 5 6
s =

R I N G

0 1 2 3

x =

REMEMBER WITH STRING SLICING...

• This makes a new string, so return it or store it in a variable!

• If you leave start_pos out, Python "fills it in" with 0

is the same as

• If you leave end_pos out, Python "fill it in" with len(s)

is the same as

• The ending index is "non-inclusive," so Python DOES NOT include
it in the new string!

OTHER IMPORTANT STRING METHODS

• string.index(substring)

Returns the first occurrence of substring inside of string

Gives error if substring is not in string

 string.find(substring)

Returns the first occurrence of substring inside of string

Returns –1 if substring is not in string

 string.rfind(substring)

Returns the LAST occurrence of substring inside of string

Returns –1 if substring is not in string

 string.strip()

Returns a copy of string with white-space removed at ends

Remember:

We call string METHODS with

string.method_name(args)

String name goes in

front!

LET'S PRACTICE!

FOR LOOPS

QUICK REVIEW:
DICTIONARIES AND LISTS

Lists
• Used to store multiple values in the

same variable.

• Each item is "labeled" with an index,

ranging 0 to len(list) - 1

• Access elements with these indices

id1

List0

1

2

"a"

"b"

"c"

Dictionaries
• Used to store multiple values in the

same variable.

• Each value is "labeled" with a key and

items are stored in "key-value pairs"

• Access elements with these keys

id2

Dictionary

"a"

"b"

"c"

1

2

3

FOR LOOPS (STRUCTURE)

Usually a new variable. Python

creates this in increments

automatically

A list, a dictionary, a string, or

anything else iterable.

More on what

"something" can be in

the next slide

Remember, if you return in a for

loop, this stops the loop early

(sometimes this is intended;

sometimes it is not)

FOR LOOPS (TYPES)

Looping Over Items

• This loop is good for processing items

of a list:

• Looking at items, storing them

elsewhere, etc.

• These are NOT good for editing lists

Values of item on each iteration:

"a" "b" "c" "d"

Looping Over Indices

• This loop is good for editing items of a

list or looking a positions.

• The indices (pos) can be used to

change the value of an entry in the

list.

Values of pos on each iteration:

0 1 2 3

FOR LOOPS (TYPES)

Looping Over Dictionaries

• This loop is good for processing AND editing items of a dictionary:

• During each iteration, key holds the value of a key for the

dictionary.

• We can use this to get values of dictionary and edit values of

dictionary

Values of key on each iteration:

"a" "b" "c" "d"

It sometimes helps to give

the loop variable a name

that tells you what it is

(instead of just x or y), like

pos or idx for range-len

loops

item for regular for loops

key for dictionary loops

LET'S PRACTICE!

SOLUTION

WHILE LOOPS

WHILE LOOPS

• Basically, while a condition is true, do

something

• Do something an unknown number of times

• More freedom than for loops (Python does

not make/increment a loop variable)

• But, this can lead to more bugs

 Make sure you ALWAYS ensure that your code

makes progress towards making that condition

false or your while loop will go on forever...

Infinite while

loops make

us angry, too

WHILE LOOPS (EXAMPLES)
This must be a Boolean (or

Boolean expression)

Must eventually do something

here to <condition> is false at

some point.

Unlike for loops, in while loops,

Python does not make and increment

this "loop variable" for us. So, we

need to do this ourselves.

Forgetting this

means Python

loops forever

LET'S PRACTICE!

RECURSION

RECURSION (GENERAL IDEA)

• Technique that solve problems by breaking them down into

sub-problems.

Uses a recursive function- a function that makes a call to itself during

Its execution.

A recursive function has a base case and a recursive case.

Splitting:

- If a string / l ist, you can take the f irst element vs the remaining.

- If an object, take that object vs the target f ields. (eg. children, employees)

WRITING A RECURSIVE FUNCTION:

Always READ the specification and do well to understand it.

Assume the function has been correctly implemented.

Step 1: Base case

• Is there a clear base case? If yes, implement it!

Step 2: Recursive Case

• Build-up on the cases and smaller recursive cases.

• Again: assume function is correctly implemented!

Step 3: Combine these outputs

• Usually the most challenging but understanding what the function does is
extremely crucial.

RECURSION (TIPS)

• If we know we need recursion and our function takes lists, this means we need to

split our input into smaller lists

• If our function takes strings, this means we need to split our input into smaller

strings

• If our function takes Person objects, we need to split our input into "smaller"

Person objects (perhaps with less ancestors?)

Thinking of types sometimes helps (debugging and coding)

This was bejeweled

example from

lecture!

LET'S PRACTICE

1. Implement a function that adds all numbers in a list. List may

contain nested lists.

2. Implement a function that counts vowels in a string.

3. Count number of dolls. Each doll may contain 0 or more children

dolls.

LET'S PRACTICE!

RECURSION (ALWAYS REMEMBER)

• Always call your function on "simpler"

inputs

• Make progress towards base case

• Avoid infinite recursion

• Always make sure your code handles

(explicitly or implicitly) the base case

• Always respect preconditions (only call

function on valid inputs)

• Do these things to avoid Angry Python

TESTING

TESTING

• We can't test every input

• But, we can come up with
"representative tests" that each have
a significantly different input.

 On the exam, tests will need to be
significantly different to get credit

 Be prepared to explain why your tests
are different

• Sometimes we use the Rules of 0, 1,
and Many to guide us

TESTING

Test function on "0" (or

empty) occurrences

Empty string/list

No occurrences of thing we

looking for in the function

Test function on "1"

occurrence

String/list of length 1

Input has 1 occurrence of

thing we are looking for

Test function on "many"

occurrences

String/list with length

greater than 1

Multiple occurrences of

the thing we are looking

for.

Rule of 0 Rule of 1 Rule of Many

REMEMBER: Tests must ALWAYS follow

specification. If test does not follow

specification, it does not count!

LET'S PRACTICE

• Let's make testing cases for the function from the last section!

• Recall the spec:

LET'S PRACTICE

• What can we use here? Is the

empty list allowed?

Rule of 0 Rule of 1 Rule of Many

LET'S PRACTICE

• What can we use here? Is the

empty list allowed?

 Yes! So, one testing case will

be:

• Can we have a case where we

don't repeat anything?

Rule of 0 Rule of 1 Rule of Many

nums = [], a = 1 []

Inputs Output

LET'S PRACTICE

• What can we use here? Is the

empty list allowed?

 Yes! So, one testing case will

be:

• Can we have a case where we

don't repeat anything?

Yes! If we only have 'a' in our

list! So, another testing case is:

Rule of 0 Rule of 1 Rule of Many

nums = [], a = 1 []

Inputs Output

nums = [1], a = 1 [1]

Inputs Output

• Can we have a test case

where we only repeat 1 thing?

LET'S PRACTICE

• What can we use here? Is the

empty list allowed?

 Yes! So, one testing case will

be:

• Can we have a case where we

don't repeat anything?

Yes! If we only have 'a' in our

list! So, another testing case is:

Rule of 0 Rule of 1 Rule of Many

nums = [], a = 1 []

Inputs Output

nums = [1], a = 1 [1]

Inputs Output

• Can we have a test case

where we only repeat 1

thing?

• Yes! If there is only 1

occurrence of a non-a element

in nums, then only one thing

will be repeated. So, another

test case is:

nums = [1,2,1], a = 1 [1,2,2,1]

Inputs Output

• Can we have a test case

where more than one thing is

repeated in nums?

LET'S PRACTICE

• What can we use here? Is the

empty list allowed?

 Yes! So, one testing case will

be:

• Can we have a case where we

don't repeat anything?

Yes! If we only have 'a' in our

list! So, another testing case is:

Rule of 0 Rule of 1 Rule of Many

nums = [], a = 1 []

Inputs Output

nums = [1], a = 1 [1]

Inputs Output

• Can we have a test case

where we only repeat 1

thing?

• Yes! If there is only 1

occurrence of a non-a element

in nums, then only one thing

will be repeated. So, another

test case is:

nums = [1,2,1], a = 1 [1,2,2,1]

Inputs Output

• Can we have a test case

where more than one thing is

repeated in nums?

• Yes! We could have a test case

where nums only contains non-

a elements. So, one case is:

• Is this actually distinct?

nums = [2,3,4], a = 1 [2,2,3,3,4,4]

Inputs Output

LET'S PRACTICE

• What can we use here? Is the

empty list allowed?

 Yes! So, one testing case will

be:

• Can we have a case where we

don't repeat anything?

Yes! If we only have 'a' in our

list! So, another testing case is:

Rule of 0 Rule of 1 Rule of Many

nums = [], a = 1 []

Inputs Output

nums = [1], a = 1 [1]

Inputs Output

• Can we have a test case

where we only repeat 1

thing?

• Yes! If there is only 1

occurrence of a non-a element

in nums, then only one thing

will be repeated. So, another

test case is:

nums = [1,2,1], a = 1 [1,2,2,1]

Inputs Output

• Can we have a test case

where more than one thing is

repeated in nums?

• Yes! We could have a test case

where nums only contains non-

a elements. So, one case is:

• Is this actually distinct?

• Yes! We need to check that our

code actually looks for ALL non-

a elements.

nums = [2,3,4], a = 1 [2,2,3,3,4,4]

Inputs Output

LET'S PRACTICE

So, our tests were:

Can you think of any more?

nums = [], a = 1 []

Inputs Output

nums = [1], a = 1 [1]

Inputs Output

nums = [1,2,1], a = 1 [1,2,2,1]

Inputs Output

nums = [2,3,4], a = 1 [2,2,3,3,4,4]

Inputs Output

DEBUGGING

DEBUGGING

• Often hard to do

• Really tests your ability to "step through" code.

• Sometimes it helps to do pseudo-call-frames (informally, of

course) to help map out what the method does on certain inputs.

• For recursion, still assume that methods works as intended

whenever you call it

• This will help find bugs in base case and combination steps

• Still make sure the function is being called correctly though (like on

proper inputs, etc.)

DEBUGGING (BRUNO...AGAIN)

• Here is a buggy

implementation of

earliest_bruno()

• There is one bug.

What is it?

DEBUGGING

• Let's start testing inputs.

• What if id1.name is not "Bruno", id1.parents

consists of p1 and p2, where p2 has an ancestor

named "Bruno" but p1 does not

earliest_bruno

p id1

These drawings

are not valid call

frames!

DEBUGGING

• What if id1.name is not "Bruno",

id1.parents consists of p1 and p2,

where p2 has an ancestor named

"Bruno" but p1 does not

earliest_bruno

p id1

earliest_bruno

p id1 bruno_births Empty list

DEBUGGING

• What if id1.name is not "Bruno",

id1.parents consists of p1 and p2,

where p2 has an ancestor named

"Bruno" but p1 does not

earliest_bruno

p id1

earliest_bruno

p id1 bruno_births Empty list

earliest_bruno

p id1 bruno_births Empty listid1.name is

not Bruno,

so skip this

DEBUGGING

• What if id1.name is not "Bruno",

id1.parents consists of p1 and p2,

where p2 has an ancestor named

"Bruno" but p1 does not

earliest_bruno

p id1

earliest_bruno

p id1 bruno_births Empty list

earliest_bruno

p id1 bruno_births Empty list

earliest_bruno

p id1 bruno_births Empty list

parent p1 (no ancestor named Bruno

DEBUGGING

• What if id1.name is not "Bruno",

id1.parents consists of p1 and p2,

where p2 has an ancestor named

"Bruno" but p1 does not

earliest_bruno

p id1

earliest_bruno

p id1 bruno_births Empty list

earliest_bruno

p id1 bruno_births Empty list

earliest_bruno

p id1 bruno_births Empty list

parent p1 (no ancestor named Bruno

earliest_bruno

p id1 bruno_births Empty list

parent p1 (no ancestor named Bruno

bruno_births None

Because p1 has no

ancestors names

Bruno.

DEBUGGING

• What if id1.name is not "Bruno",

id1.parents consists of p1 and p2,

where p2 has an ancestor named

"Bruno" but p1 does not

earliest_bruno

p id1

earliest_bruno

p id1 bruno_births Empty list

earliest_bruno

p id1 bruno_births Empty list

earliest_bruno

p id1 bruno_births Empty list

parent p1 (no ancestor named Bruno

earliest_bruno

p id1 bruno_births Empty list

parent p1 (no ancestor named Bruno

bruno_births None

But, wait, this line will then

append None to bruno_births. Is

that what we want?

DEBUGGING

• What if id1.name is not "Bruno",

id1.parents consists of p1 and p2,

where p2 has an ancestor named

"Bruno" but p1 does not

earliest_bruno

p id1

earliest_bruno

p id1 bruno_births Empty list

earliest_bruno

p id1 bruno_births Empty list

earliest_bruno

p id1 bruno_births Empty list

parent p1 (no ancestor named Bruno

earliest_bruno

p id1 bruno_births Empty list

parent p1 (no ancestor named Bruno

bruno_births None

No! Because this line tries to sort bruno_years.

Python can't do that if there are Nones in a list

with ints. So, we found our bug.

SORTING/SEARCHING

LINEAR SEARCH

• Input can be any iterable

• Iterables are types that can be looped over (e.g. strings and lists)

• Iterate from start to end in search of the value

• Can also search from end to start

• Time complexity is order of n, which we can write as O(n), where

n is the length of the input

• Worst case, value is not in list and algorithm searches entire list

BINARY SEARCH

• Input must be a sorted iterable

• A string of letters in alphabetical order works

• A string of letters and numbers does not work

• A list of words in alphabetical order works

• Time complexity is order of logn, which we can write as O(logn),
where n is the length of the input

• Process of splitting in half is logarithmic, and this is done n
times

INSERTION SORT

• Input iterable becomes slightly more sorted per iteration

• Starting at the 2nd element, push values down to correct spot

• E.g. [3,1,2] alters to [1,3,2] after an iteration since the '1' was pushed down

to before '3'

• Pushing elements down can be done in a helper method

• Time complexity is order of n^2, which we can write as O(n^2), where

n is the length of the input

• For every element in the array, we push the value down to its correct spot

MERGE SORT

• Perfect example of the power of recursion

• Break input into two parts

• Sort the two parts

• Merge the two sorted lists into one list

• Time complexity is order of nlogn, which we can write
as O(nlogn), where n is the length of the input

• For every element in the array, we push the value down to its
correct spot

THANK YOU FOR COMING AND
GOOD LUCK

Just know, you got this!

Read the directions carefully

Breathe

And avoid Angry Python at all costs

