
CLASSES/SUBCLASSES 
REVIEW

Presented By: Tiffany, Riya, Cornelius, Ian



In This Presentation

Drawing Classes and Subclasses

◦ We're going to draw class folders 

and then diagram some code 

using call frames with classes and 

subclass

Creating Classes and Subclasses

◦ We're then going to create a class 

and two subclasses for practice!



DRAWING 
PRACTICE

Let's draw folders and call frames together!



Let's Draw This Code



Let's Draw This Code

First, let's draw 

the class folders!



Let's Draw This Code

Always put class 

names in upper 

RIGHT tab!

A



Let's Draw This Code

Then, add class 

attributes

A

x y10 20



Let's Draw This Code

Next, add it methods

Then, the folder for A 

is done!

A

x y

__init__(self,y)

f(self,x)

g(self)

10 20

Notice: f(self,x=5) is 

also acceptable, but 

f(self) is NOT!



Let's Draw This Code

Let's do the same for B!

Add the name of the 

class to upper right tab.

A

x y

__init__(self,y)

f(self,x)

g(self)
B(A)

10 20



Let's Draw This Code

Then, add our 

methods and 

class variables!

A

x y

__init__(self,y)

f(self,x)

g(self)

x

__init__(self,x,y)

f(self)

h(self)

B(A)

10 20

20



Class vs. Object Folders



So...When Drawing a Class Folder

◦First put the name of the class in the upper RIGHT corner

◦ If the class has a super class, represent this by writing the 

name of the super class in parentheses next to the class's 

name

◦Then, put class variable names and values in the folder.

◦Finally, put method names in the folder.



Let's Draw This Call With Our Code



Heap Space

Global Space

Call Stack



Heap Space

Global Space

Call Stack

B

id1

This is a Constructor call

When Python sees one of these, it 

makes a folder for this object (gives it 

an ID in top left and puts the name of 

class in the right).

Then, it calls the __init__ method to 

populate the folder (next slide)



Heap Space

Global Space

Call Stack

B

id1

B.__init__ 19 

self x yid1 1 7



Heap Space

Global Space

Call Stack

B

id1

B.__init__ 19 20 

self x yid1 1 7

y 1



Heap Space

Global Space

Call Stack

B

id1

B.__init__ 19 20 

self x yid1 1 7

y 1

A.__init__ 6 

self yid1 1



Heap Space

Global Space

Call Stack

B

id1

B.__init__ 19 20 

self x yid1 1 7

y 1

A.__init__ 6 7

self yid1 1

z 1 Wait! Which 

f() is called?



Overriding

◦Definition – when 

a method exists in a 

superclass and we 

define it in the subclass as well.

◦So, f() is overridden in given code because it exists in A, and we 

define a different version in B

◦Can be done with other methods, too (like __init__, __eq__, etc.)

◦Which version is called though?



Overriding
◦The one in B!

◦What Python does:

◦ self is id1, so does id1 

contain a method called f()?

◦No!

◦Next, check id1's class (B). 

Does it contain a method f()?

◦ Yes! Call that one!

◦So, Python doesn't even care 

that it exists in A as well

A.__init__ 6 7

self yid1 1

B
id1

y 1

z 1

x

__init__(self,y)

f(self)

h(self)

B(A)

20



Heap Space

Global Space

Call Stack

B

id1

B.__init__ 19 20 

self x yid1 1 7

y 1

A.__init__ 6 7

self yid1 1

z 1

B.f 23

self id1



Heap Space

Global Space

Call Stack

B

id1

B.__init__ 19 20 

self x yid1 1 7

y 1

A.__init__ 6 7

self yid1 1

z 1

B.f 23

self id1 RETURN 20



Heap Space

Global Space

Call Stack

B

id1

B.__init__ 19 20 

self x yid1 1 7

y 1

A.__init__ 6 7

self yid1 1

z 1

B.f 23

self id1 RETURN 20

x 20

RETURN

None



Heap Space

Global Space

Call Stack

B

id1

B.__init__ 19 20 

self x yid1 1 7

y 1

A.__init__ 6 7

self yid1 1

z 1

B.f 23

self id1 RETURN 20

x 20

RETURN

None

RETURN None



Heap Space

Global Space

Call Stack

B

id1

B.__init__ 19 20 

self x yid1 1 7

y 1

A.__init__ 6 7

self yid1 1

z 1

B.f 23

self id1 RETURN 20

x 20

RETURN

None

RETURN None

b id1



Summary: Constructors

◦Constructor: B(1,7) from last slides

◦So, name of class followed by parentheses (and then 
arguments if necessary)

◦How it works:

◦Create a folder and give it an ID (put name of class in right side 
of folder)

◦Call __init__ to populate folder, passing the ID of the folder as 
self

◦When __init__ finishes, "return" the value of the folder's id

◦Which is why id1 was stored in b at the end of our last slide



CODING PRACTICE

Let's code together!



Coding Scenario

◦ We're making a Cornell in Python!

◦ There are three classes we will code:

◦ Cornellian

◦ Student (which extend Cornellian)

◦ Professor (which extends Cornellian)

◦ We're going to code the __init__ method for Cornellian, Student, and Professor

◦ We will also code the __eq__ method in Cornellian

◦ Finally, we will code a method that will allow students to choose their major!



Coding Scenario

Cornellian

Class 

Attributes

NEXT_NUM 

(int > 0)

Instance 

Attributes

first_name

(nonempty string)

last_name

(nonempty string)

cuid

(nonempty string)

Methods
__init__

__eq__

Professor

Class 

Attributes

Instance 

Attributes

first_name

(nonempty string)

cuid

(nonempty string)

last_name

(nonempty string)

Methods
__init__

advisees (list of 

Student objecst)

chooseMajor

department

(string)

Student

Class 

Attributes
n/a

Instance 

Attributes

first_name

(nonempty string)

last_name

(nonempty string)

cuid

(nonempty string)

Methods
__init__

advisor (Professor 

object)

chooseMajor

departments

(list of strings

all_of_em (list of 

Professor objects

major (string)

college (string)



Class Attribute(s) for Cornellian



__init__ for Cornellian



__eq__ for Cornellian



What does overriding __eq__ do?
◦ This changes how Python checks for equality.

◦ Say c1 and c2 were two Cornellian Objects.

◦ Without implementing __eq__, Python would 

simply check that the ids of the folders were 

the same when c1 == c2 was called.

◦ However, if we override __eq__, Python will 

now check something different when we call 

c1 == c2 (it will check that the cuid in each 

folder is the same), so we get the response we 

want.

◦ What determines which __eq__ is called?

◦ We use the __eq__ associated with the first 

object listed

◦ Because when Python sees c1 == c2, it 

translates this into c1.__eq__(c2)

Without overriding __eq__

With __eq__ overridden



Class Attribute(s) for Professor



__init__ for Professor



Class Attribute(s) for Student?



__init__ for Student



chooseMajor for Student



THANK YOU FOR 
COMING

Any Questions?


