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1. [8 points] What’s the point? Imagine a word-based game like Scrabble where:

• Global variable points is a dictionary whose keys are letters and values are the points earned
for using that letter:

points = {'a':1, 'b':3, 'c':3, 'd':2, 'e':1, ... , 'w':4, 'x':8, 'y':4, 'z':10}

• Words get placed on a board such that some of the word’s individual letters might lie on
places that earn a bonus of double or triple points.

For a given word, bonus multipliers for the word’s letters are stored in a list mults, each entry
of which is either 1 (no change), 2 (double the score), or 3 (triple the score).

• A word’s score is the sum of each of its individual letter’s scores after any bonus multipliers.

Examples: From dictionary points, we know the following point values: ’e’: 1 and ’w’: 4.

word mults score

“eww” [1, 1, 1] 1 × 1 + 4 × 1 + 4 × 1 = 9
“eww” [1, 2, 3] 1×1 + 4×2 + 4×3 = 21
“we” [2, 3] 4×2 + 1×3 = 11

Implement the following function.

def score_word(word, mults):

""" Given `word` & its letter multipliers `mults`, returns word's score, an int

Precondition (no need to assert):

word [str]: contains only lowercase letters, length >= 1.

mults: list of ints with same length as `word`.

Each entry is either 1, 2, or 3.

`points` is a dictionary in **global space** (not a parameter of this

function) as described in the problem text. """
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2. [12 points] We need a holiday! Implement the following function, using for-loops effectively.

def num_holidays(holiday_list):

"""Returns the number of days off, given a non-empty list of holidays, holiday_list

that has no duplicate holidays and no overlapping holidays

A holiday is a list of 2-3 items:

* a non-empty string, the name of the holiday

* a start date

* an optional end date (if the holiday lasts longer than 1 day).

This is the last day the holiday is celebrated.

A date is a list with 2 items:

* a non-empty string, the month

* an int, the day of the month (assume valid number for the month)

You may assume that all holidays start and end in the same month.

Examples:

SU22 = [["Juneteenth", ["Jun", 20]]] # 1 day holiday

num_holidays(SU22) --> returns 1

FA21 = [["Labor Day", ["Sep", 6]], # 1 day holiday

["Fall Break", ["Oct", 9], ["Oct", 12]], # 4 day holiday

["Thanksgiving", ["Nov", 24], ["Nov", 28]] # 5 day holiday

num_holidays(FA21) --> returns 10

"""
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3. Class it up! In the previous question, dates were represented as lists. Now let’s represent
them using classes.

(a) [2 points] In the code below, insert python code that creates the class attribute MAX DAYS.

(b) [6 points] In the code below, insert python code that completes Date’s __init__() method.

class Date:

"""Objects represent an instance of a Date.

Class attributes:

MAX_DAYS: 31, the maximum number of days that any month can have

Instance attributes:

month [str]: 3-character, uppercase abbreviation of the month

day [int]: the day of the month, 0 < day <= MAX_DAYS for a Date """

def __init__(self, m, d):

""" Creates a new Date with attributes set as follows:

month: the first 3 characters of m, uppercase

day: set to d, **OR** the max legal value if d is too large

Preconditions: (STUDENTS: don't assert them)

m: a str with len >= 3

d: an int, 0 < d """
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(c) [2 points] Given the Date class as it is defined on the previous page, what is the value of
x after executing the following code?

d1 = Date("August", 12)

d2 = Date("August", 12)

x = (d1 == d2)

Circle One: True False Neither*

*because an Error occurs before x is given a value

(d) [4 points] Override the following special method of class Date according to its specification.

def __eq__(self, other):

""" Returns: True if the month and day of the Dates are equal,

False o.w.

Precondition (no need to assert): other is a Date. """

(e) [2 points] The precondition above does not state that self needs to be a Date. Does ask-
ing Python to evaluate the expression "annoying string" == Date("Feb", 29) cause
the Date eq () method to be called with a value of self or other not being a Date?
Explain your answer. (Credit given only for correct explanation — an answer of just “Yes”
or “No” will not receive points.)

Page 5



4. [20 points] A Picture is worth a thousand words ...and not 4 5 points. Diagram the
execution of each of the following code snippets. Include global variables, object folders and
class folders, but omit call frames.

If the code changes a value, write in the old value and then cross it out. (Don’t just erase.)

If an error occurs, diagram all variable/attribute changes that occur before the error occurs,
and then write “ERROR” in large letters in the box containing the code.

class A:

b = 1

d = 2

def __init__(self):

self.d = 3

e = A()

e.d = e.b

x = e.d

class A:

b = 1

def __init__(self):

self.d = 2

e = A()

b = 3

e.b = e.d

x = A.b
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class A:

b = 1

def __init__(self):

self.d = 2

e = A()

A.b = A.d

A.d = 3

x = A.b

class A:

b = 1

def __init__(self):

self.d = 2

e = A()

e.d = 3

A.d = A.b

x = e.d
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5. Where’s Waldo? This question involves a Person class with 2 instance attributes:

• name [str]

• parents [list of Persons], possibly empty

You may assume that no person appears twice in a family tree.

The function below is buggy. It does not accomplish the task in its specification.

1 def find_waldo_broken(p):

2 """ Returns:

3 True if any ancestor of p (including p) has the name "Waldo"

4 False if no ancestor of p (including p) has the name "Waldo"

5 Precondition (no need to assert): p is a person

6 """

7 if p.name == "Waldo":

8 return True

9 found = False

10 for parent in p.parents:

11 found = find_waldo_broken(parent)

12 return found

13

(a) [2 points] Identify the problem. Describe the problem with the above implementation:

(A) Y’all are wrong. This function works according to its specification!

(B) This function always returns False.

(C) This function always returns True.

(D) This function sometimes returns True when p has no a family member named “Waldo”.

(E) This function sometimes returns False when p has a family member named “Waldo”.

(F) The function code could throw an error, even when the preconditions are met.

(G) The function could run forever.

Circle One: A B C D E F G

(b) [6 points] Modify the code above so that it accomplishes the task in its specification.
(Your answer should be edits to the original code.)
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6. [16 points] Let’s talk about Bruno! This question involves a Person class with 3 instance
attributes:

• name [str]

• birthyear [int], must be > 0 and < 2023 (there is no time travel)

• parents [list of Persons], possibly empty

You may assume that no Person appears twice in a family tree. You may also assume that
everyone is born later than their parents.

Implement the following function, making effective use of recursion.

def earliest_bruno(p):

"""

Returns: the birthyear of the earliest born ancestor named "Bruno"

None if there is no ancestor named "Bruno"

this includes p

Example: if there are two ancestors named "Bruno" born in 2000 and 1909,

--> returns 1909

Precondition (no need to assert): p is a person """
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This is a comprehensive reference sheet that might include functions or methods not needed for your prelim.

String methods

s[i:j] Returns: if i and j are non-negative indices and i ≤ j-1, a new string containing the characters in s from
index i to index j-1, or the substring of s starting at i if j ≥ len(s)

s.count(s1) Returns: the number of times s1 occurs in string s

s.find(s1) Returns: index of first occurrence of string s1 in string s (-1 if not found)

s.find(s1,n) Returns: index of first occurrence of string s1 in string s STARTING at position n. (-1 if s1 not found in
s from this position)

s.index(s1) Returns: index of first occurrence of string s1 in string s; raises an error if s1 is not found in s.

s.index(s1,n) Returns: index of first occurrence of string s1 in string s STARTING at position n; raises an error if s1

is not found in s from this position

s.isalpha() Returns: True if s is not empty and its elements are all letters; it returns False otherwise.

s.isdigit() Returns: True if s is not empty and its elements are all numbers; it returns False otherwise.

s.islower() Returns: True if s is has at least one letter and all letters are lower case; returns False otherwise (e.g.,
‘a123’ is True but ‘123’ is False).

s.isupper() Returns: True if s is has at least one letter and all letters are upper case; returns False otherwise (e.g.,
‘A123’ is True but ‘123’ is False).

s.lower() Returns: a copy of s, all letters converted to lower case.

s.join(slist) Returns: a string that is the concatenation of the strings in list slist separated by string s

s.replace(a,b) Returns: a copy of s where all instances of a are replaced with b

s.split(sep) Returns: a list of the “words” in string s, using sep as the word delimiter (whitespace if sep not given)

s.strip() Returns: copy of string s where all whitespace has been removed from the beginning and the end of s.
Whitespace not at the ends is preserved.

s.upper() Returns: a copy of s, all letters converted to upper case.

List methods

lt[i:j] Returns: if i and j are non-negative indices and i ≤ j-1, a new list containing the elements in lt

from index i to index j-1, or the sublist of lt starting at i if j ≥ len(s)

lt.append(item) Adds item to the end of list lt

lt.count(item) Returns: count of how many times item occurs in list lt

lt.index(item) Returns: index of first occurrence of item in list lt; raises an error if item is not found. (There’s no
“find()” for lists.)

lt.index(y, n) Returns: index of first occurrence of item in list lt STARTING at position n; raises an error if item

does not occur in lt.

lt.insert(i,item) Insert item into list lt at position i

lt.pop(i) Returns: element of list lt at index i and also removes that element from the list lt. Raises
an error if i is an invalid index.

lt.remove(item) Removes the first occurrence of item from list lt; raises an error if item not found.

lt.reverse() Reverses the list lt in place (so, lt is modified)

lt.sort() Rearranges the elements of x to be in ascending order.

Dictionary Operations

d[k] = v Assigns value v to the key k in d.

d[k] If value v was assigned to the key k in d, d[k] evaluates to v.

del d[k] Deletes the key k (and its value) from the dictionary d.

Other useful functions

s1 in s Returns: True if the substring s1 is in string s; False otherwise.

elem in lt Returns: True if the element elem is in list lt; False otherwise.

y in d Returns: True if y is a key in dictionary d; False otherwise.

input(s) prompts user for a response using string s; returns the user’s response as a string.

isinstance(o, c) Returns: True if o is an instance of class c; False otherwise.

len(s) Returns: number of characters in string s; it can be 0.

len(lt) Returns: number of items in list lt; it can be 0.

len(d) Returns: number of keys in dictionary d; it can be 0.

list(range(n)) Returns: the list [0 .. n-1]
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