
Last Name: First Name: Cornell NetID, all caps:

CS 1110 Prelim 2 Solutions April 2017

1. [10 points] For-loops. Implement the following specification. Your implementation must make
effective use of a for-loop.

def followers(wordlist, starter):

"""Returns a list of all words that immediately follow starter in wordlist,

in the order they appear in wordlist.

(Returns the empty list if there aren't any).

Does not alter wordlist.

Preconditions:

wordlist is a list of nonempty strings, none of which contain spaces

wordlist might be itself empty

starter is a nonempty string with no spaces

Example: if wordlist is ["a", "man", "a", "plan", "a"],

if starter is "a", returns ["man", "plan"]

if starter is "flower", returns [] """

Your implementation must make effective use of a for-loop

Solution:
Must be careful about “falling off the end” of the list.

output = []

for i in range(len(wordlist)-1):

if wordlist[i] == starter:

output.append(wordlist[i+1])

return output

Alternate solution:

output = []

for i in range(len(wordlist)):

if i+1 < len(wordlist) and wordlist[i] == starter:

or, if i < len(wordlist) - 1 ...

output.append(wordlist[i+1])

return output

The following IS INCORRECT:

output = []

for w in wordlist[:len(wordlist)-1]:

if w == starter:

i = wordlist.index(w) #### THIS ALWAYS USES THE LEFTMOST FOLLOWER

output.append(wordlist[i+1])

return output

Last Name: First Name: Cornell NetID:

2. [16 points] Recursion. Make effective use of recursion to implement the following new method,
games, for class Outcome. Some relevant specifications are given on the next page.

class Outcome(object):

"""Class invariant given on next page, for space reasons."""

def games(self, team):

"""Returns an int representing the number of games that team played in

this Outcome and all its sub-Outcomes.

Precondition: team is a non-empty string.

For examples of output for games(), see the next page."""

You may NOT use the teams() method from A4.

You MUST use _extract_name() --- specification on the next page.

Look at the examples for games() on the next page before you start.

Solution:

g0 = 0 # number of times team has played in the top-level Outcome

if team in [_extract_name(self.input1), _extract_name(self.input2)]:

g0 = 1

g1 = 0 # number of times team has played in first subOutcome

if isinstance(self.input1, Outcome):

g1 = self.input1.games(team)

g2 = 0 # number of times team has played in second subOutcome

if isinstance(self.input2, Outcome):

g2 = self.input2.games(team)

return g0 + g1 + g2

Page 2

Last Name: First Name: Cornell NetID:

3. [24 points] Classes. Dominoes are rectangular tiles with one number on each side. There are
multiple games in which players place dominoes on a table in a row called a “train”. A domino
can be placed in a train next to another domino if their adjacent numbers match:

Direction of Train

There is a skeleton of a Domino class below and on the following pages. Complete this class
by adding code under each function specification.

When you have finished, addDomino should have the following behavior. Before adding a
domino [2 | 1], the train might look like this:

side1 = 2
side2 = 1
prior = None
next = None
outwardFacingSide = -1

side1 = 5
side2 = 1
prior =
next = None
outwardFacingSide = 1

Train not yet added

After [2 | 1] has been added (and flipped), the train will look like this:

side1 = 2
side2 = 1
prior =
next = None
outwardFacingSide = 2

side1 = 5
side2 = 1
prior =
next =
outwardFacingSide = 1

Train

Note that side1 and side2 for [2 | 1] have not changed.

class Domino(object):

""" An instance represents a Domino game piece

Attributes:

side1: the value on side 1 of the domino piece [int 1..6]

side2: the value on side 2 of the domino piece [int 1..6]

prior: the domino immediately preceeding this domino [Domino or None]

next: the domino that follows this domino [Domino or None]

outwardFacingSide: the value on the side that is facing out,

or -1 if unattached [int -1 or 1..6] """

Page 3

Last Name: First Name: Cornell NetID:

def __init__(self, n1, n2):

""" Makes new domino have value n1 on side 1 and n2 on side2

and not attached to any domino train (prior and next are None).

outwardFacingSide should default to -1.

Precondition: n1, n2 are integers in [1..6]"""

Solution:

self.side1 = n1

self.side2 = n2

self.prior = None

self.next = None

self.outwardFacingSide = -1

def __str__(self):

"""Returns: The string representation of this Domino

in the form: "Domino: side1|side2". For example:

if side1 is 5, side2 is 6, this returns "Domino: 5|6"

Note: | is a key on your keyboard; just draw a vertical bar"""

Solution:

return "Domino " + str(self.side1) + "|" + str(self.side2)

Page 4

Last Name: First Name: Cornell NetID:

def canExtend(self):

"""Returns: True if no domino follows this one in a train,

False otherwise."""

Solution:

return self.next is None

def addDomino(self, d):

"""Returns: True if domino d can be added to the train ending at

the current domino, and False otherwise. If d can be added, this function

sets this domino's next to be d, sets the prior of d to be this

domino, and updates the outwardFacingSide attribute of d.

A domino d can be added to the current domino if: 1) d has side1 or side2

equal to this domino's outwardFacingSide value, 2) the domino on which this

is being called is the end of a train (canExtend returns True for this domino),

and 3) the prior of d is None.

Precondition: d is a Domino """

Solution:

if not self.canExtend() or not d.prior is None:

return False

if d.side1 == self.outwardFacingSide:

d.prior = self

self.next = d

d.outwardFacingSide = d.side2

return True

elif d.side2 == self.outwardFacingSide:

d.prior = self

self.next = d

d.outwardFacingSide = d.side1

return True

else:

return False

Page 5

Last Name: First Name: Cornell NetID:

4. [18 points] Name resolution and inheritance.

class A(object):

c = 3

def f(self):

self.c = 5

return 10

def g(self):

return self.f()

class B(A):

def f(self):

c = 4

return 14

a = A()

b = B()

print a.g()

print b.g()

print a.c

print b.c

Put your object and class folder diagrams here
(do not draw any function frames):

class A(object):

c = 3

def f(self):

self.c = 5

return 10

def g(self):

return self.f()

class B(A):

def f(self):

c = 4

return 14

a = A()

b = B()

print a.g()

print b.g()

We guarantee that no errors result from running the code above.

1. In the space above, draw the object and class folders that result by running this code.
You should include method names and class variables in the class folders, and your object
folders must have the type label in the upper right corner.

You only need to draw two class folders, in addition to any folders for objects.

Do not draw any frames for function calls.

Remember that class folders have their tab on the right-hand side, whereas object folders
have their tab on the left-hand side.

2. In the space below, write down what will get printed by each of the four print statements
when they are executed in the order shown. (No credit for the print-statement output if
you do not provide the diagrams requested above.)

Solution:

Page 6

Last Name: First Name: Cornell NetID:

10 # the f in A; also changes the c in object a

14 # b.g is the g in A, which calls f which refers to B's f

5 # the c in object a was changed two lines above

3 # the c for object b is not in b, or in B, but in A

5. [5 points] Loop correctness/invariants. Here is a specification:

def first_below(thelist, limit):

"""Returns: index of leftmost item in thelist that has value less than

limit. (Returns -1 if no such item exists in thelist.)

Precondition: thelist is a possibly empty list of ints. limit is an int.

Example input/output pairs:

first_below([4, 2, 5, -2], 3) --> 1 first_below([4, 10, 5,-2], 3) --> 3

first_below([4, 2, 5,-2], 5) --> 0 first_below([4, -2, 5, 2],-3) --> -1

first_below([4, -2, 5, 2],-2) --> -1 first_below([],5) --> -1 """

Below are two attempted implementations. Exactly one is correct; the other one fails its test
cases, and one potential issue is that it fails to initialize or maintain its invariant.

Your job: correct the wrong implementation so that it agrees with the written invariant and
thereby works correctly. Do so by changing exactly one line of (non-commented) code:
circle the offending line and then write the correct version next to it.

Page 7

Last Name: First Name: Cornell NetID:

i = 0

INVARIANT: thelist[0..i-1] are all >= limit. So i is next place to check

while i < len(thelist) and thelist[i] >= limit:

i = i + 1

if i < len(thelist):

return i

else:

return -1

j = 0

INVARIANT: thelist[0..j] are all >= limit. So j+1 is next place to check

while j+1 < len(thelist) and thelist[j+1] >= limit:

j = j + 1

if j+1 == len(thelist):

return -1

else:

return j+1

Solution:
Second version starts j off wrong; it should be j = -1, not j = 0

6. [1 point] Fill in your last name, first name, and Cornell NetID at the top of each
page.

Solution:
Always do this! It prevents disaster in cases where a staple fails.

Page 8

