
CS 1110 Regular Prelim 1 March 2022

This 90-minute closed-book, closed-notes exam has 6 questions worth a total of roughly 77 points
(some point-total adjustment may occur during grading).
You may separate the pages while working on the exam; we have a stapler available.

It is a violation of the Academic Integrity Code to look at any exam other than your
own, to look at any reference material besides the 1 page reference provided, or to
otherwise give or receive unauthorized help.
We also ask that you not discuss this exam with students who are scheduled to take
a later makeup.
Academic Integrity is expected of all students of Cornell University at all times, whether in the
presence or absence of members of the faculty. Understanding this, I declare I shall not give, use
or receive unauthorized aid in this examination.

Signature: Date

First Name:

Last Name:

Cornell NetID, all caps:

1. [8 points] Strings. Implement the following function.

def peel(markers, text):

"""Returns a new string where the `markers` have been removed from the

beginning and end of `text`

Examples:

peel("()", "(abc)") --> "abc"

peel("()", "(1(+)1)") --> "1(+)1"

peel("<()>", "<(>.<)>") --> ">.<"

peel("ab", "ab") --> ""

Preconditions:

markers: string of even length (0 is allowed)

text: any-length string that starts w/ 1st half of `markers`, ends w/ 2nd half.

"""

REMINDER: in a slice expression like s[n:m], n and m must be ints, not floats

Page 2

2. [8 points] Lists. Implement the following function.

def swap2(a_list, j, k):

"""Modifies a_list by swapping the two elements of a_list starting

at index j with the 2 entries of a_list starting at index k.

Examples:

swap2([100, 101, 102, 103, 104, 105, 106, 107, 108, 109], 1, 6)

changes a_list to

[100, 106, 107, 103, 104, 105, 101, 102, 108, 109]

-------- --------

swap2([100, 101, 102, 103, 104, 105, 106, 107, 108, 109], 0, 4)

changes a_list to

[104, 105, 102, 103, 100, 101, 106, 107, 108, 109]

-------- --------

swap2(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'], 0, 4)

changes a_list to

['e', 'f', 'c', 'd', 'a', 'b', 'g', 'h', 'i', 'j']

-------- --------

Preconditions:

j and k are valid indices (positive, < len(a_list))

j + 2 <= k (the elements you're swapping don't overlap in a_list)

k + 2 <= len(a_list) """

STUDENTS: loops are NOT ALLOWED (or needed)

Page 3

3. Some truths are self evident. Some are learned in CS 1110.

(a) [2 points] True or False? The drawing below accurately depicts the value of variable x
in Global Memory after the code below is executed in Python:

1 def double_x(input):

2 return input * 2

3

4 x = 5

5 x = double_x(x)

Circle One:

True False

(b) [2 points] True or False? The drawing below accurately depicts the value of variable x
in Global Memory after the code below is executed in Python:

1 def double_x(input):

2 x = input * 2

3

4 x = 5

5 double_x(x)

Circle One:

True False

(c) [2 points] True or False? The drawing below accurately depicts the value of variable x
in Global Memory after the code below is executed in Python:

1 def double_x(input):

2 x = input * 2

3 print(str(x))

4

5 x = 5

6 double_x(x)

Circle One:

True False

(d) [2 points] True or False? The drawing below accurately depicts the value of variable x
in Global Memory after the code below is executed in Python:

1 def double_x(input):

2 x = input * 2

3 print(str(x))

4

5 x = 5

6 x = double_x(x)

Circle One:

True False

Page 4

4. [24 points] Time for dinner! Place is an object with 3 attributes: spoon, fork, and knife.
A call of the form Place(s,f,k) creates a new Place object with attribute spoon set to s,
fork set to f, and knife set to k. Assume that class Place is accessible within the given
code. Simulate running all 27 lines of code and draw the memory diagram as seen in class and
Assignment 2.

Global Space Heap Call Stack

1 def soup(p):

2 p.spoon = p.spoon + 1

3 drawer.spoon = drawer.spoon - 1

4 def salad(p):

5 p.fork = p.fork + 1

6 drawer.fork = drawer.fork - 1

7 p2.knife = p2.knife + 2

8 drawer.knife = drawer.knife - 1

9 def dinner (p, with_soup, with_salad):

10 if with_soup:

11 soup(p)

12 if with_salad:

13 salad(p)

14 def dessert(p, name):

15 if name == "ice cream":

16 n_spoons = 2

17 else:

18 n_spoons = 0

19 p.fork = p.fork + 1

20 p.spoon = p.spoon + n_spoons

21 return n_spoons

22 p1 = Place(1, 2, 0)

23 p2 = Place(1, 2, 0)

24 drawer = Place(6, 4, 8)

25 dinner(p1, False, True)

26 n_spoons = dessert(p2, "ice cream")

27 drawer.spoon = drawer.spoon - n_spoons

Page 5

5. [8 points] Testing, Testing, 1, 2, 3, Testing!

Consider the following function specification, which you might use if you want to distribute the
cost of dinner amongst you and your friends.

def batch_withdraw(balance_list, withdraw_amount):

"""balance_list is a list of floats representing the balances of

multiple bank accounts

Pre-condition:

withdraw_amount is a float with value >= 0.

Return a new list of the same length as balance_list, where every

value is the corresponding value in balance_list minus

withdraw_amount. If any value in balance_list is less than

withdraw_amount (i.e., there is not enough in the account to withdraw),

return the empty list. """

Here is an example of one set of sample inputs and an expected output:

Inputs Expected Output

Test Case balance list withdraw amount return value

1 [20.0, 30.0, 40.0, 50.0] 10.0 [10.0, 20.0, 30.0, 40.0]

Provide two more conceptually distinct test cases, using the same format. Include a short
statement (1-2 sentences) explaining what situation each of your test cases represents.

Test Case balance list withdraw amount return value

2

Test Case 2 covers the following situation:

Test Case balance list withdraw amount return value

3

Test Case 3 covers the following situation:

Page 6

6. The eyes have it. Assume objects of class Point have two attributes: x and y; both are ints.
Assume objects of new class Face have three Point attributes: left eye, and right eye, and
nose. Face attributes should have the following relationships to be considered proportionate:

• left eye and right eye have the same y attribute values (they are the same height)

• left eye and right eye are centered across the y-axis (left eye’s x attribute is negative
and right eye’s x attribute is positive)

• nose always sits on the y-axis (x=0)

• nose is always lower than the eyes by the distance that the eyes are from the y-axis.
Example: if the eyes are 2 units from the y-axis, the nose will be 2 units below the eyes.

(a) [6 points] Implement the following function.

def set_face(f, right_x, right_y):

"""Given ints right_x and right_y (which are the desired values for the

x and y coordinates of the right eye of Face f), sets the left_eye,

right_eye and nose attributes of Face f, so that Face f is proportionate.

Precondition: right_x and right_y are non-negative ints. """

Reminder: to negate the variable n in Python, you simply write -n.

Page 7

(b) [9 points] Implement the following function.

def is_proportionate(f):

"""Return True if the locations of the eyes and nose of Face f make the face

`proportionate`, based on the definition at the beginning of this question.

If any of the x,y attributes of the elements of Face f are not in proportion,

return False.

"""

(c) [6 points] Implement the following function.

def eyes_wider(first, second):

""" Return True if the eyes of Face `first` are wider apart than

the eyes of Face `second`. Otherwise return False.

Also return False if either face is not proportionate.

"""

Page 8

