
CS 1110 Final Exam, May 2022

This 150-minute (2.5 hour) closed-book, closed-notes exam has 8 questions worth a total of roughly
109 points (some point-total adjustment may occur during grading).
You may separate the pages while working on the exam; we have a stapler available.

It is a violation of the Academic Integrity Code to look at any exam other than your
own, to look at any reference material besides the reference provided in the exam
itself, or to otherwise give or receive unauthorized help.
We also ask that you not discuss this exam with students who are scheduled to take
a later makeup.

Academic Integrity is expected of all students of Cornell University at all times, whether in the
presence or absence of members of the faculty. Understanding this, I declare I shall not give, use
or receive unauthorized aid in this examination.

Signature: Date

Name (First Last):

Cornell NetID, all caps:

This is a comprehensive reference sheet that might include functions or methods not needed for your exam.

String methods

s[i:j] Returns: if i and j are non-negative indices and i ≤ j-1, a new string containing the characters in s from
index i to index j-1, or the substring of s starting at i if j ≥ len(s)

s.count(s1) Returns: the number of times s1 occurs in string s

s.find(s1) Returns: index of first occurrence of string s1 in string s (-1 if not found)

s.find(s1,n) Returns: index of first occurrence of string s1 in string s STARTING at position n. (-1 if s1 not found in
s from this position)

s.index(s1) Returns: index of first occurrence of string s1 in string s; raises an error if s1 is not found in s.

s.index(s1,n) Returns: index of first occurrence of string s1 in string s STARTING at position n; raises an error if s1

is not found in s from this position

s.isalpha() Returns: True if s is not empty and its elements are all letters; it returns False otherwise.

s.isdigit() Returns: True if s is not empty and its elements are all numbers; it returns False otherwise.

s.islower() Returns: True if s is has at least one letter and all letters are lower case; returns False otherwise (e.g.,
‘a123’ is True but ‘123’ is False).

s.isupper() Returns: True if s is has at least one letter and all letters are upper case; returns False otherwise (e.g.,
‘A123’ is True but ‘123’ is False).

s.lower() Returns: a copy of s, all letters converted to lower case.

s.join(slist) Returns: a string that is the concatenation of the strings in list slist separated by string s

s.replace(a,b) Returns: a copy of s where all instances of a are replaced with b

s.split(sep) Returns: a list of the “words” in string s, using sep as the word delimiter (whitespace if sep not given)

s.strip() Returns: copy of string s where all whitespace has been removed from the beginning and the end of s.
Whitespace not at the ends is preserved.

s.upper() Returns: a copy of s, all letters converted to upper case.

List methods

lt[i:j] Returns: if i and j are non-negative indices and i ≤ j-1, a new list containing the elements in lt

from index i to index j-1, or the sublist of lt starting at i if j ≥ len(s)

lt.append(item) Adds item to the end of list lt

lt.count(item) Returns: count of how many times item occurs in list lt

lt.index(item) Returns: index of first occurrence of item in list lt; raises an error if item is not found. (There’s no
“find()” for lists.)

lt.index(y, n) Returns: index of first occurrence of item in list lt STARTING at position n; raises an error if item

does not occur in lt.

lt.insert(i,item) Insert item into list lt at position i

lt.pop(i) Returns: element of list lt at index i and also removes that element from the list lt. Raises
an error if i is an invalid index.

lt.remove(item) Removes the first occurrence of item from list lt; raises an error if item not found.

lt.reverse() Reverses the list lt in place (so, lt is modified)

lt.sort() Rearranges the elements of x to be in ascending order.

Dictionary Operations

d[k] = v Assigns value v to the key k in d.

d[k] If value v was assigned to the key k in d, d[k] evaluates to v.

del d[k] Deletes the key k (and its value) from the dictionary d.

Other useful functions

s1 in s Returns: True if the substring s1 is in string s; False otherwise.

elem in lt Returns: True if the element elem is in list lt; False otherwise.

y in d Returns: True if y is a key in dictionary d; False otherwise.

input(s) prompts user for a response using string s; returns the user’s response as a string.

isinstance(o, c) Returns: True if o is an instance of class c; False otherwise.

len(s) Returns: number of characters in string s; it can be 0.

len(lt) Returns: number of items in list lt; it can be 0.

len(d) Returns: number of keys in dictionary d; it can be 0.

list(range(n)) Returns: the list [0 .. n-1]

Page 2

1. [8 points] Implement the following function.

def send_help(s):

"""

s is a string of one or more non-empty sequences of dashes and dots

separated by single exclamation points. Each sequence represents a

letter in Morse Code (A= '.-', B= '-...', O= '---', S= '...')

Using this exclamation point encoding, the sign for needing help

(usually SOS: ...---...) would be !...!---!...!

We want to send help even if the SOS signal is 'hidden' among

other sequences in s.

Returns True if the sequences for SOS appear in that order even

if other sequences are present. Otherwise return False.

Examples:

send_help('!...!---!...!') returns True

send_help('!.!...!.-!---!.!...!') returns True

send_help('!...!...!---!') returns False (wrong order)

send_help('!....!...!---!') returns False ('....' is H)

send_help('!...!...!.---!') returns False ('.---' is J)

"""

Page 3

2. The function encrypt below should transform an input string (plaintext) into an encrypted
string (ciphertext). Sadly, there are multiple bugs in the code below. Read the
specifications carefully; then, identify and fix the bugs.

The encryption uses the Fibonacci sequence. The Fibonacci sequence is defined recursively in
the docstring of fib(), but the implementation uses a while loop. The first few numbers in
the sequence are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

As shown in the following table, the nth letter in the alphabet is mapped to the nth Fibonacci
number:

n 1 2 3 4 5 6 7 8 . . . 26

Letter A B C D E F G H ... Z

Fibonacci Number 1 1 2 3 5 8 13 21 ... 121393

For example, “A”, the first letter in the alphabet, is mapped to the first number in the sequence
(fib(1) = 1), “B”, the second letter in the alphabet, is mapped to the second number in the
sequence (fib(2) = 1), “C” is mapped to the third (fib(3) = 2), “D” is mapped to the fourth
(fib)(4) = 3), etc.

The concatenation of all of these numbers (separated by spaces) becomes the ciphertext. Thus,
encrypting the plaintext “fade” should result in the ciphertext “8 1 3 5” because “F” maps to
8, “A” maps to 1, “D” maps to 3, and “E” maps to 5.

1 def fib(n):

2 """

3 Returns the nth Fibonacci number.

4 Precondition: n > 0

5

6 fib(1) = 1

7 fib(2) = 1

8 for n > 2 :

9 fib(n) = fib(n-1) + fib(n-2)

10 """

11 if n == 1 or n == 2:

12 return 1

13

14 prev_prev = 1

15 prev = 1

16 curr_fib = prev_prev + prev

17 counter = 3

18

19 while counter <= n:

20 prev_prev = prev

21 prev = curr_fib

22 curr_fib = prev_prev + prev

23 counter += 1

24

25 return curr_fib

28 def encrypt(plaintext):

29 """

30 Encrypts the plaintext using the following rule:

31 each (capitalized) letter of the plaintext is mapped

32 to the corresponding element of the Fibonacci sequence.

33

34 The concatenation of all these numbers (separated by

35 spaces) becomes the ciphertext.

36

37 Returns the ciphertext.

38

39 Precondition: plaintext contains only letters

40 """

41 alphabet = "!ABCDEFGHIJKLMNOPQRSTUVWXYZ" # start with '!'

42 # so letters start at index 1

43 ciphertext = ""

44 plaintext_index = 0

45 while plaintext_index < len(plaintext):

46 curr_letter = plaintext[plaintext_index]

47 alpha_index = alphabet.index(curr_letter)

48 ciphertext += str(fib(alpha_index)) + " "

49

50 plaintext_index += 1

51

52 return ciphertext

Page 4

(a) [5 points] Consider the following call to encrypt and the Python error it triggers.

>>> print(encrypt("fade"))

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "cipher.py", line 47, in encrypt

alpha_index = alphabet.index(curr_letter)

ValueError: substring not found

Below, explain where (a single line number) and why this error is triggered. And, write
below the correct version of the line.

(b) [5 points] After the first bug (above) is fixed, the call

>>> print(encrypt("fade"))

should print the following string: ‘‘8 1 3 5’’.

Instead, it prints: ‘‘13 1 5 8’’.

Below, explain where (a single line number) and why this problem is triggered. (Hint:
three of the Fibonacci numbers look wrong; where are those calculated for each letter?).
And, write below the correct version of the line.

(c) [5 points] After the two bugs above are fixed, consider the following call to encrypt and
the Python error it triggers.

>>> print(encrypt("attack@6:30"))

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "cipher.py", line 47, in encrypt

alpha_index = alphabet.index(curr_letter)

ValueError: substring not found

Is this a bug in the code? If so, identify the issue and provide the correct version of the
line. If not, explain why.

Page 5

3. [15 points] Implement the following function, making effective use of for-loops.

def extract_maxes(values):

"""

values: a non-empty list of non-empty lists of ints >= 0

(no need to enforce these preconditions)

Modifies `values` as follows:

Removes the largest value from each list of ints in `values`.

If there is a tie (2-way or more), removes the last occurrence

of the largest value in that list and ignores the earlier occurrences

Return: a list containing the removed entries in their original order

Ex: values = [[4, 0, 12], [20], [4, 1, 2]]

Modified values = [[4, 0], [], [1, 2]]

Returns [12, 20, 4]

Ex: values = [[12, 40, 16, 8], [30, 21, 30, 24]]

Modified values = [[12, 16, 8], [30, 21, 24]]

Returns [40, 30]

"""

You may NOT use the built-in max() function.

Page 6

4. [15 points] In this question, we will model the spread of fake news through a social network.
This network is composed of Person objects with the following attributes:

• name [str] - unique non-empty name of this person

• following [list of Persons] - people this person follows

• fact checker [boolean] - True if this person always fact checks their news before shar-
ing. Otherwise (if the person shares news without doing their own research), False.

Assume no two people share the same name, and no person can reach themselves by tracing
through the following network.

Implement the function below, making effective use of recursion.

def find_spreaders(root):

""" Returns a (possibly empty) list of names of persons in root's network

(including root) who don't fact-check news. (They spread fake news.)

Example:

a = Person("Alice", [], True)

b = Person("Bob", [], False)

c = Person("Caitlin", [a, b], False)

find_spreaders(a) returns []

find_spreaders(b) returns ["Bob"]

find_spreaders(c) returns ["Caitlin", "Bob"]

Precondition (no need to assert): root is a Person """

Note: the original question said to return a "list of persons" instead of

a "list of the names of persons". Credit was given for returning a

list of persons OR a list of person's names

Page 7

5. [20 points] Execute the script below; draw the global space, the call frames, and the heap space
(including both class folders and object folders). We drew the first class folder for you. For
method call frames, give the method name as 〈class name〉.〈method name〉(), since we need to
know which class’s method is being called. Don’t forget to draw the call frames for __init__.

1 class A:

2 y = 6

3 def __init__(self, z):

4 self.x = 2

5 y = self.y + z

6 A.y = y + 1

7 self.swap()

8 def swap(self):

9 temp = self.x

10 self.x = self.y

11 self.y = temp

12 class B(A):

13 y = 1

14 def __init__(self, z, w):

15 self.z = y - z

16 super().__init__(w)

17 def swap(self):

18 temp = self.x

19 self.x = self.y

20 self.y = temp

21 y = 8

22 b = B(5,2)

Page 8

6. [10 points] This question simulates managing schools (groups) of fish in fish tanks. Here is the
docstring for a new class School.

class School:

"""Instance attributes:

fish_type [non-empty str]: type of the fish (e.g., "angelfish")

count [int >= 0]: number of fish in this school

"""

And here is the docstring for a new class FishTank.

class FishTank:

"""Instance attributes:

my_fish [School]: the school that lives in this fish tank

a fish tank can contain only one school at a time

CAPACITY [int >= 0]: max number of fish that can fit in the tank

Once initialized, this value should not change.

"""

Implement the migrate fish method of class FishTank so that it meets its specification.

def migrate(self, tank2, n):

"""Move n fish from self to tank2.

(counts of both schools should change accordingly)

Preconditions (no need to assert):

- the two tanks have the same fish_type

- tank2 is a FishTank

- n is a positive int

Move n fish, but also only as many fish as the donor school can offer

(based on its count) and also only as many as the receiving tank can accept

(based on the count of its current school and capacity of the tank).

"""

Page 9

7. [20 points] In this question, we begin with a new Message class defined as follows:

class Message:

"""Instance Attributes:

author [non-empty str]: username of the author of the message.

No two authors can have the same username.

content [non-empty str]: content of this message

likes [int >= 0]: number of likes the message has. Initially 0.

dislikes [int >= 0]: number of dislikes the message has. Initially 0.

"""

def __init__(self, a, c):

"""Creates a new Message with:

author a, content c, 0 likes and dislikes

Preconditions (no need to enforce):

a: non-empty str

c: non-empty str

"""

self.author = a

self.content = c

self.likes = 0

self.dislikes = 0

def calculate_score(self):

"""

Returns the score of this message

"""

return self.likes - (self.dislikes//2)

A Post is a type of Message. Posts are different from messages in 3 ways:

1. They have titles.

2. Users can leave comments on a post.

3. Authors may pay to promote their post, which has the effect of boosting the post’s score.

Page 10

Implement the class Post below according to the provided specifications. Do not worry about
enforcing preconditions.

class Post(Message):

"""Class attributes:

promo_count [int]: number of posts currently promoted, initially 0

PROMO_MAX: the max number of posts that can be promoted, set to 10

Instance attributes:

Includes those of Message. And also:

title [non-empty str]: title of this post

comments [list of Messages]: comments on this post. Initially empty.

is_promoted [bool]: Whether the post is promoted. Initially False.

"""

def __init__(self, a, c, t):

"""Creates a new Post with author a, title t, content c,

0 likes and dislikes, empty coments, is_promoted set to False.

Preconditions (no need to enforce):

a: non-empty str

t: non-empty str

c: non-empty str

"""

A student pointed out that if the score is negative, a promoted post’s score is twice as negative. This
doesn’t make much real-world sense, but the exam asked students to implement according to spec.

def calculate_score(self):

""" Returns the score [int] of this post

If the post is promoted, the score is doubled

Otherwise, the score is calculated the same as any other Message.

"""

Page 11

def is_controversial(self):

""" Return: True if this post is controversial; otherwise, False.

A post is considered controversial if the number of comments is greater

than the Post's score.

"""

def promote(self):

"""

Promotes this post (incrementing the number of promoted posts appropriately)

Returns True if the promotion was successful, otherwise False

A promotion cannot be performed if:

1) the post is already promoted

2) the post is controversial or

3) The total number of promoted posts would be greater than PROMO_MAX

"""

Page 12

8. For each question, provide only one answer. If you provide 2, we will only grade the first.

(a) [2 points] Which of the following statements about while loops is false?

(A) While loops are well-suited to tasks where the exact number of iterations is unknown
up front.

(B) If you define a loop variable (like, x, a list element) at the start of a while loop, Python
will update its value per iteration.

(C) While loops introduce the possibility of being stuck in an infinite loop.

(D) If a while-loop has header
while not raining:

Python will check whether the variable not raining is true before each iteration.

(E) If you intend to remove a list element when iterating over a list, it’s better to do this
with a while loop than a for loop.

Seriously, put your answer in the box. Your Answer:

(b) [2 points] Which of the following statements about Binary Search is false?

(A) Binary Search is faster than Linear Search.

(B) With each step of Binary Search, you can rule out half of the search space.

(C) In Binary Search, doubling the size of the input list does not double the expected
time of the search.

(D) Binary Search works on any list, sorted or not.

(E) Binary Search’s complexity is on the order of log2n.

Your Answer:

(c) [2 points] What is the “work” that is measured when calculating the runtime complexity
of Merge Sort? The work is measured by the number of...

(A) calls to merge.

(B) calls to merge sort.

(C) comparisons of individual elements in the list.

(D) times the list is split in half.

(E) elements in the list.

Your Answer:

Page 13

