
Cornell NetID, all caps:

CS 1110 Regular Final Solutions May 2021

Skeletons/testing code available at
https://www.cs.cornell.edu/courses/cs1110/2021sp/exams/prelim1/2021_spring_prelim1_testcode.py.

1. [5 points] String processing. At the bottom of the page are specifications for some string
methods you can use for this question.

Consider strings of the following format, where the number of spaces can vary (but you can
assume at least one space immediately in front of and immediately behind each >>, : and ##):

tag >> college1 : outcome1 ## college2 : outcome2 ## ... ## enr : enrolledCollege

Two example strings:

3 >> OSU : Accepted ## Yale U : Accepted ## BU : Accepted ## enr : BU

and (notice the leading and extra spaces)

3 >> OSU : Accepted ## Yale U : Accepted ## ISU : Accepted ## enr : ISU

Let variable sline store some string in the format above.

Write roughly 1-5 lines of Python that store in variable tag the int that is the “tag” portion
of sline.

For either example above, the value stored in tag would be the int 3, not the string ’3’.

Don’t assume that the tag has only one digit.

Multiple solutions are possible; here are two.

tag = int(sline[:sline.index(">>")].strip())

or

tag = int(sline.split(’>>’)[0].strip())

The function int() ignores leading and trailing spaces, so calling string method strip() was
not, strictly speaking, necessary. We had originally had a point allocated to the call to strip()

(or equivalent handling of extra spaces) in the grading guide, but removed it, bringing the exam
to 118 points.

Potentially useful string methods:

s.index(target): returns the index of the first (i.e., leftmost) occurrence of target in string
s. Raises an error if target isn’t in s.

s.rindex(target): returns the index of the last (i.e., rightmost) occurrence of target in
string s. Raises an error if target isn’t in s.

s.split(splitter): Precondition: s is a string and splitter is a string. Returns a list of
strings that are the parts of s that were separated by splitter. Example: ’a!b!c’.split(’!’)
returns [’a’, ’b’, ’c’].

s.strip(): Returns a version of s with leading and trailing (but not internal) spaces removed.

Cornell NetID, all caps:

2. [9 points] Nested lists. Implement the following function.

def diminish_rows(matrix, thresholds):

""" Preconditions (no need to assert these):

matrix: non-empty list of non-empty lists of ints.

The sublists all have the same length.

thresholds: a list of ints, one for each row of `matrix`.

Modifies `matrix` as follows:

Letting row = matrix[i],

Every value in row that is <= thresholds[i] stays the same.

Every value in row that is > thresholds[i] is changed to threshold[i]

Ex: matrix = [[5], [10], [15], [3]]

thresholds = [6, 6, 6, 6]

Then change matrix to [[5], [6], [6], [3]]

Ex: matrix = [[1, 2, 3], [5, 2, 9], [-8, -1, 6], [2, 10, 6]],

thresholds = [2, 7, -3, 1]

modified matrix = [[1, 2, 2], [5, 2, 7], [-8, -3, -3], [1, 1, 1]]"""

for row in range(len(matrix)):

thresh = thresholds[row]

for col in range(len(matrix[0])): # all rows have same length

if matrix[row][col] > thresh:

matrix[row][col] = thresh

Alternate “while-like” solution:

irow = 0 # needed to find right entry in thresholds

for row in matrix:

thresh = thresholds[irow]

for icol in range(len(row)):

if row[icol] > thresh:

row[icol] = thresh

irow += 1

Notes:

1. It was necessary to make sure to match the index of each item thresholds to the index
of the corresponding row in matrix. Some solutions were incorrect because the lost track
of whether they were indexing the rows or the columns.

2. The specification of a function is not executed. So, one could not assume that variables i
or row existed.

3. [16 points] While Loops and Linear Search

Page 2

Cornell NetID, all caps:

Consider the specification of the class WishItem and its initializer. Do not implement the
initializer, just know from its specification how to create a new WishItem instance.

class WishItem:

""" An instance represents an item in a person's wish list at a shop

Instance attributes:

code [non-empty str]: unique string identifying the product wanted

num_units [positive int]: number of units of the product wanted """

def __init__(self, p_code, p_num):

"""Creates a new WishItem with attributes set as follows:

code: set to `p_code`, where `p_code` is a non-empty string

num_units: set to `p_num`, where `p_num` is a positive int """

Implement the following function, making effective use of a while loop. Your solution must use
a while loop to receive points.

def add_to_wish_list(wlist, prod, u):

""" Modify `wlist`, a list of WishItems, by adding `u` units of the product

with the product code `prod`. If the product is already in the list, increase

the number of units wanted for that product by `u`. If the product is not in

the list, update `wlist` to include a new WishItem with `u` units of that

product. This function modifies the list; it does not create a new list.

Preconditions (no need to assert these):

wlist: a list of WishItems or an empty list. The elements in wlist have

distinct product codes.

prod: a non-empty string identifying the product wanted

u: the number of units of the product to be added, a positive int"""

Notes:

• A statement like if prod in wlist will not work as (presumably) intended. prod is a
string, whereas the items in wlist are WishItems, according to the preconditions; so prod

is never in wlist.

k= 0

while k < len(wlist) and wlist[k].code != prod:

k= k + 1

if k==len(wlist):

wlist.append(WishItem(prod, u))

else:

wlist[k].num_units += u

Alternate solution with sentinel variable in loop guard

Page 3

Cornell NetID, all caps:

k= 0

found= False

while k < len(wlist) and not found:

if wlist[k].code == prod:

wlist[k].num_units += u

found= True

else:

k= k + 1

if not found:

wlist.append(WishItem(prod, u))

4. Testing and Debugging. The function date of birth is meant to return a string repre-
senting a birthday. But there are multiple bugs in the code below. Read the specifications
carefully; then, on the next page, identify and fix the bugs.

1 def date_of_birth(name, m, d, y):

2 """

3 Returns date of birth with month `m`, day `d` and year `y`

4 of a person with name `name`.

5

6 Examples:

7 date_of_birth('Jiwon', 9, 13, 2000)

8 --> "Jiwon was born on Sept. 13th, 2000!"

9

10 date_of_birth('Rene Descartes', 3, 31, 1596)

11 --> "Rene Descartes was born on Mar. 31st, 1596!"

12

13 Preconditions:

14 name: string.

15 m: int. 1 <= m <= 12

16 d: int. 1 <= d <= 31

17 y: int. 1 <= y <= 2022

18 """

19 month = get_month(m)

20 day = get_day(d)

21 year = y

22

23 date_of_birth = month + " " + day + ", " + year

24

25 message = name + " was born on " + date_of_birth + "!"

26 return message

27

28 def get_month(m):

29 """Returns month name for month number `m`.

30 The 1st month name is "Jan."

31 """

32 month_list = ["Jan.", "Feb.", "Mar.", "Apr.", "May",

33 "June", "July", "Aug.", "Sept.", "Oct.", "Nov.", "Dec."]

34

35 month = month_list[m]

36 return month

37

38 def get_day(d):

39 """

40 Returns a string representation of day `d`

41 with appropriate suffixes using the following rules:

42

43 1. Days 11, 12, 13: use "th".

44 2. Any other days ending in 1,2,3: use "st", "nd", and "rd", respectively.

45 3. Any other remaining days: use "th".

Page 4

Cornell NetID, all caps:

46

47 Examples:

48 get_day(11) --> "11th"

49 get_day(1) --> "1st"

50 get_day(28) --> "28th"

51

52 """

53 ending = d % 10

54

55 if d in [11, 12, 13]:

56 day = day_th(d)

57 elif ending <= 3:

58 day = day_st_nd_rd(d)

59 else:

60 day = day_th(d)

61

62 return day

63

64 def day_st_nd_rd(d):

65 """

66 precondition: d: int, where last digit

67 is between 1 and 3 inclusive.

68 """

69 ending = d % 10

70

71 if ending == 1:

72 suffix = "st"

73 elif ending == 2:

74 suffix = "nd"

75 else:

76 suffix = "rd"

77

78 day = str(d) + suffix

79 return day

80

81 def day_th(d):

82 day = str(d) + "th"

83 return day

Page 5

Cornell NetID, all caps:

(a) [5 points] First Bug: Consider the following call to date of birth and the Python error
it triggers.

>>> date_of_birth('Jiwon', 9, 13, 2000)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "birthday.py", line 23, in date_of_birth

date_of_birth = month + " " + day + ", " + year

TypeError: can only concatenate str (not "int") to str

Below, explain where (a single line number) and why this error is triggered. And, write
below the correct version of the line.

Need to convert year to str before concatenating. line 21: year = str(y)

or line 23: date_of_birth = month + ” ” + day + ”, ” + str(y)+ or

line 23: date_of_birth = month + ” ” + day + ”, ” + str(year)

(b) [5 points] Second Bug: After the first bug (above) is fixed, the call

>>> date_of_birth('Jiwon', 9, 13, 2000)

should return the following string:

"Jiwon was born on Sept. 13th, 2000!"

Instead, it returns

"Jiwon was born on Oct. 13th, 2000!"

Below, explain where (a single line number) and why this problem is triggered. And,
write below the correct version of the line.

indexing mistake for getting the correct month name (off by 1).
line 35: month = month list[m - 1] or, line 19: month = get month(m-1)

(c) [5 points] Third Bug: After the two bugs above are fixed, the call

>>> date_of_birth('Jason', 12, 20, 1988)

should return the following string:

'Jason was born on Dec. 20th, 1988!'

but instead returns

'Jason was born on Dec. 20rd, 1988!'

Below, explain where (a single line number) and why this problem is triggered. And,
write below the correct version of the line.

Line 57 incorrectly includes days ending in 0 (e.g. day 20). Change line 57 to elif

1 <= ending <= 3: or elif 1 <= ending and ending <=3: Student answer that at-
tempts to handle days ending in 0 in day st nd rd is incorrect, because the precondition
of day st nd rd requires that the last digit be d: 1 <= d <= 3.

5. [20 points] Memory Model

Execute the following script and draw the call frames, the heap space, and the global space. Do
not draw any class folders, but don’t forget to draw the call frames for __init__. Call frames
for methods should follow the same conventions as call frames for other functions, except also
indicate the name of the class next to the name of the method.

Page 6

Cornell NetID, all caps:

1 class Interval:

2 def __init__(self, lt, rt):

3 self.left= lt

4 self.right= rt

5 def mystery(self, other):

6 left= max(self.left, other.left)

7 right= min(self.right, other.right)

8 if right <= left:

9 return None

10 return [left, right]

11 a= Interval(3,7)

12 b= Interval(-5,8)

13 a= b.mystery(a)

Notes:

• Since the instructions said to include the class name by the name of a method in the call
frame, it was counted as incorrect to omit the word “Interval” in the method call-frame

Page 7

Cornell NetID, all caps:

top-left corner.

• It was not counted as an error to include the line for a method header in the program
counter for the corresponding call frame.

6. [16 points] Recursion.

Let Employee be a class whose objects have the following two attributes:

name [str] - unique non-empty name of employee

employees [list of Employee] - employees reporting directly to this employee.

*** LENGTH IS AT MOST 2 ***. (The length can be 0.)

Implement the following function (not a method), making effective use of recursion. For-loops
are not required, although they are allowed as long as your solution is fundamentally recursive.

def get_tree(person):

"""Returns list of names of ALL employees that are *underneath*

`person` (at any level). Order of list items does not matter; duplicates OK.

Example:

engineer = Employee('E', []) means get_tree(engineer) --> []

cto = Employee('T', [engineer]) means get_tree(cto) --> ['E']

coo = Employee('O', []) means get_tree(coo) --> []

ceo = Employee('CEO', [coo, cto]) means get_tree(cea) --> ['O','T','E']

Precondition: `person` is an Employee."""

Note: the original final exam was incompletely edited, so that there was some text that indicated
that get_tree was a method, and other text that indicated that it was a non-method function.

In the end, we did not deduct points for either kind of solution as long as the treatment
(method vs non-method function) was consistent. Here is a solution assuming the function is
not a method.

out = []

for sub in person.employees:

out += [sub.name] + get_tree(sub)

return out

Alternate solution (highly dispreferred because less natural, less readable, harder to debug)

if len(person.employees)==0:

return []

elif len(person.employees)==1:

sub = person.employees[0]

return get_tree(sub) + [sub.name]

else:

left = person.employees[0]

right = person.employees[1]

return get_tree(left) + get_tree(right) + [right.name, left.name]

Page 8

Cornell NetID, all caps:

7. [15 points] Classes. This question simulates posting announcements on a course in Canvas:
students can opt to additionally have announcements emailed to them.

Here is the docstring for a new class Student.

class Student:

"""Instance attributes:

netid [non-empty str]: netID, unique to this Student

opted_in [bool]: Whether this Student should be emailed announcements.

courses [list of Courses]: Courses this Student is enrolled in.

Can be empty.

inbox [list of strings]: messages for this Student. Can be empty."""

And here is the docstring for a new class Course.

class Course:

"""Instance attributes:

enrolled: List of unique Students enrolled in this Course.

Can be empty.

announcements: possibly empty list of strings. """

Implement the following method of class Course so that it meets its specification.

def announce(self, a):

"""Adds `a` to this Course's announcements.

Also adds `a` to the end of the inbox of every Student enrolled in this

Course that has opted in.

(Does *not* do so for Students that did *not* opt in.)

Returns: a list of the netids of the Students that had the announcement

put in their inbox.

Precondition: `a` is a nonempty string."""

self.announcements.append(a)

emailed = []

for s in self.enrolled:

if s.opted_in:

s.inbox.append(a)

emailed.append(s.netid)

return emailed

8. Classes and subclasses.

(a) [15 points] Suppose the following code (both columns) were executed.

Page 9

Cornell NetID, all caps:

6 class A:

7 num_As = 0

8

9 def __init__(self):

10 A.num_As += 1

11

12 def __str__(self):

13 # Assume a reasonable format for type()

14 return "I am type " + str(type(self))

15

16 class B(A):

17 pass

18 def __str__(self):

19 return "I am a B"

20

21 class C(A):

22 num_Cs = 0

23 def __init__(self):

24 super().__init__()

25 self.num_Cs = 23

26

27 a1 = A()

28 a2 = A()

29 a3 = A()

30 # b = B()

31 c1 = C()

32 c2 = C()

33 print(A.num_As)

34 print(C.num_Cs)

35 print(c2.num_Cs)

36 print(c2)

1. What is the output of line 33? (Write “Error” if an error would occur.) 5

2. What is the output of line 34? (Write “Error” if an error would occur.) 0

3. What is the output of line 35? (Write “Error” if an error would occur.) 23

4. What is the output of line 36? (Write “Error” if an error would occur.) I am type C
(or something similar. But NOT “I am type A”)

5. True or False? Explain your answer in 1-2 sentences; no credit without explanation.

Class B must have a definition of an __init__ method; otherwise, if line 30
were uncommented, an error would occur.

False; class B inherits the initializer of its superclass.

(b) [6 points] Consider the following code.

1 class Z:

2 def __init__(self,n):

3 self.label = n

4 z = Z("first Z object")

For each statement below, write whether it is “True”, “False”, or “Not enough info to
decide”. No other explanation needed.

Note that the line numbers were meant to indicate that there was no code “before” this
code, so, for instance, there would not be a global variable label available.

1. Changing line 3 to “self.n = label” would not cause an error when the code is
executed. False

2. Changing line 3 to “self.n = label” would cause an error when the code is executed,
because label is not defined. True

Page 10

Cornell NetID, all caps:

3. Changing line 3 to “self.n = label” would cause an error when the code is executed,
because n is not defined. False

4. Changing line 3 to “self.n = n” would cause an error when the code is executed,
because label is not defined. False

9. [1 point] Fill in your Cornell NetID (ex: LJL2, not your Cornell ID number) at the
top of each page.

Also, don’t discuss this exam with students who are scheduled to take a later
makeup.

Have a great summer!

Page 11

