
Generators

Lecture 27



Announcements for This Lecture

Assignments Finishing Up

• Submit a course evaluation
§ Will get an e-mail for this
§ Part of the “participation 

grade” (e.g. polling grade)
• Final, Dec 13th 2-4:30 pm

§ Study guide is posted
• Conflict with Final Exam?

§ e.g. > 2 finals in 24 hours
§ Submit conflicts to CMS
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• A6 is now graded
§ Mean: 88.2 Median: 92
§ Std Dev: 13.4
§ Mean: 17.5 hr Median: 15 hr
§ Std Dev: 9 hr

• A7 due December 7th
§ Should be moving asteroids
§ Extensions via lab instructor
§ Can work in Lab Thu/Fri



Recall: The Range Iterable

range(x)

• Creates an iterable
§ Can be used in a for-loop

§ Makes ints (0, 1, ... x-1)

• But it is not a tuple!
§ A black-box for numbers

§ Entirely used in for-loop

§ Contents of folder hidden

Example

>>> range(3)
range(0,3)
>>> for x in range(3)
…        print(x)
0
1
2
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Recall: The Range Iterable

range(x)

• Creates an iterable
§ Can be used in a for-loop

§ Makes ints (0, 1, ... x-1)

• But it is not a tuple!
§ A black-box for numbers

§ Entirely used in for-loop

§ Contents of folder hidden

Example

>>> range(3)
range(0,3)
>>> for x in range(3)
…        print(x)
0
1
2

Iterable: Anything that 
can be used in a for-loop
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Iterators: Iterables Outside of For-Loops

• Iterators can manually extract elements
§ Get each element with the next() function
§ Keep going until you reach the end
§ Ends with a StopIteration (Why?)

• Can create iterators with iter() function
>>> a = iter([1,5,3])
>>> next(a)
1
>>> next(a)
5

Must be a 
iterable
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Iterators Can Be Used in For-Loops

>>> a = iter([1,2])
>>> for x in a:
….     print(x)
….
1
2
>>> for x in a:
….     print(x)
….
>>>

Technically, iterators 
are also iterable

But they are 
one-use only!
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Iterators are Classes

class range2iter(object):
"""Iterator class for squares of a range"""
# Attribute _limit: end of range
# Attribute _pos: current spot of iterator
…
def __next__(self):

"""Returns the next element"""
if self._pos >= self._limit:

raise StopIteration()
else:

value = self._pos*self._pos
self._pos += 1
return value
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Iterators are Classes

class range2iter(object):
"""Iterator class for squares of a range"""
# Attribute _limit: end of range
# Attribute _pos: current spot of iterator
…
def __next__(self):

"""Returns the next element"""
if self._pos >= self._limit:

raise StopIteration()
else:

value = self._pos*self._pos
self._pos += 1
return value

Defines the 
next() fcn
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Iterators are Classes

class range2iter(object):
"""Iterator class for squares of a range"""
# Attribute _limit: end of range
# Attribute _pos: current spot of iterator
…
def __next__(self):

"""Returns the next element"""
if self._pos >= self._limit:

raise StopIteration()
else:

value = self._pos*self._pos
self._pos += 1
return value

How far to go

How far we are

Raise error when 
gone too far
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Iterators are Classes

class range2iter(object):
"""Iterator class for squares of a range"""
# Attribute _limit: end of range
# Attribute _pos: current spot of iterator
…
def __next__(self):

"""Returns the next element"""
if self._pos >= self._limit:

raise StopIteration()
else:

value = self._pos*self._pos
self._pos += 1
return value

Essentially a 
loop variable

Update “loop” after
doing computation
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Iterables are Also Classes

class range2(object):
"""Iterable class for squares of a range"""

def __init__(self,n):
"""Initializes a squares iterable"""
self._limit = n

def __iter__(self):
"""Returns a new iterator"""
return range2iter(self._limit)

Defines the
iter() function
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Iterables are Also Classes

class range2(object):
"""Iterable class for squares of a range"""

def __init__(self,n):
"""Initializes a squares iterable"""
self._limit = n

def __iter__(self):
"""Returns a new iterator"""
return range2iter(self._limit)

Iterables are objects 
that generate 

iterators on demand
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Iterators are Hard to Write!

• Has the same problem as GUI applications
§ We have a hidden loop
§ All loop variables are now attributes
§ Similar to inter-frame/intra-frame reasoning

• Would be easier if loop were not hidden
§ Idea: Write this as a function definition
§ Function makes loop/loop variables visible

• But iterators “return” multiple values
§ So how would this work?
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The Wrong Way

def range2iter(n):
"""
Iterator for the squares of numbers 0 to n-1

Precondition: n is an int >= 0
"""
for x in range(n):

return x*x Stops at the
first value
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The yield Statement

• Format: yield <expression>
§ Used to produce a value
§ But it does not stop the “function”
§ Useful for making iterators

• But: These are not normal functions
§ Presence of a yield makes a generator
§ Function that returns an iterator
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The Generator approach

def range2iter(n):
"""
Generator for the squares 
of numbers 0 to n-1

Precon: n is an int >= 0
"""
for x in range(n):

yield x*x

>>> a = range2iter(3)
>>> a
<generator object>
>>> next(a)
0
>>> next(a)
1
>>> next(a)
4

Essentially 
a constructor
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What Happens on a Function Call?

No call 
frame

Creates 
a generator
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next() Initiates a Function Call

Frame for 
next()

Comes from 
original call
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Call Finishes at the yield

yield is return
for next()
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Later Calls Resume After the yield

Next call returns 
to where it left off

From last 
time
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Exception is Made Automatically

Exception when 
generator is done
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Return Statements Make Exceptions

Exception when 
generator is done
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Activity: Call Frame Time

Function Defintions

def rnginv(n):        #Inverse range
for x in range(1,n):

yield 1/x

def harmonic(n):    #Harmonic sum
sum = 0
g = rnginv(n)
for x in g:

sum = sum+x
return x

Function Call

>>> x = harmonic(2)
Assume we are here:
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20
19

32
33
34
35
36

Ignoring the heap,
what is the next step?

harmonic 342n

0sum id3g



Which One is Closest to Your Answer?

A: B:

C: D:

rnginv 19
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harmonic 342n

0sum id3g

2n

harmonic 342n

0sum id3g 1x

rnginv 20

harmonic 342n

0sum id3g

2n

1x 1YIELD

rnginv 20

harmonic 342n

0sum id3g

2n

1x



Which One is Closest to Your Answer?

A: B:

C: D:

rnginv 19
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harmonic 342n

0sum id3g

2n

harmonic 342n

0sum id3g 1x

rnginv 20

harmonic 342n

0sum id3g

2n

1x 1YIELD

rnginv 20

harmonic 342n

0sum id3g

2n

1x

E:

¯\_(ツ)_/¯



Activity: Call Frame Time

Function Defintions

def rnginv(n):        #Inverse range
for x in range(1,n):

yield 1/x

def harmonic(n):    #Harmonic sum
sum = 0
g = rnginv(n)
for x in g:

sum = sum+x
return x

Function Call

>>> x = harmonic(2)
A:
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35
36

A:

rnginv 19

harmonic 342n

0sum id3g

2n

What is the next step?



Which One is Closest to Your Answer?

A: B:

C: D:
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rnginv 21

harmonic 342n

0sum id3g

2n

1x 1YIELD

rnginv 20

harmonic 342n

0sum id3g

2n

1x

harmonic 342n

0sum id3g 1x

rnginv 20

harmonic 342n

0sum id3g

2n

1x 1YIELD



Activity: Call Frame Time

Function Defintions

def rnginv(n):        #Inverse range
for x in range(1,n):

yield 1/x

def harmonic(n):    #Harmonic sum
sum = 0
g = rnginv(n)
for x in g:

sum = sum+x
return x

Function Call

>>> x = harmonic(2)
B:
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32
33
34
35
36

What is the next step?

rnginv 20

harmonic 342n

0sum id3g

2n

1x



Which One is Closest to Your Answer?

A: B:

C: D:
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rnginv

harmonic 342n

0sum id3g

2n

1x 1RETURN

harmonic 342n

0sum id3g

harmonic 342n

0sum id3g 1x

rnginv

harmonic 342n

0sum id3g

2n

1x 1YIELD

1x

rnginv 192n

1x 1YIELD



Activity: Call Frame Time

Function Defintions

def rnginv(n):        #Inverse range
for x in range(1,n):

yield 1/x

def harmonic(n):    #Harmonic sum
sum = 0
g = rnginv(n)
for x in g:

sum = sum+x
return x

Function Call

>>> x = harmonic(2)
D:
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20
19

32
33
34
35
36

rnginv

harmonic 342n

0sum id3g

2n

1x 1RETURN



Generators Are Easy

• They replace the accumulator pattern
§ Function input is an iterable (string, list, tuple)
§ Function output typically a transformed copy
§ Old way: Accumulate a new list or tuple
§ New way: Yield one element at a time

• New way makes an iterator (not iterable)
§ So can only be used once!
§ But easily turned into a list or tuple
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Accumulators: The Old Way

def add_one(lst):
"""Returns copy with 1 added to every element

Precond: lst is a list of all numbers"""
copy = []  # accumulator
for x in lst:

x = x +1 
copy.append(x)

return copy
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Generators: The New Way

def add_one(input)
"""Generates 1 added to each element of input

Precond: input is a iterable of all numbers"""

for x in input :
yield x +1

Much 
Simpler!

yield eliminates
the accumlator
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Accumulators: The Old Way

def evens(lst):
"""Returns a copy with even elements only

Precond: lst is a list of all numbers"""
copy = []  # accumulator
for x in lst:

if x % 2 == 0:
copy.append(x)

return copy
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Generators: The New Way

def evens(input):
"""Generates only the even elements of input

Precond: input is a iterable of all numbers"""

for x in input:
if x % 2 == 0:

yield x
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Accumulators: The Old Way

def average(lst):
"""Returns a running average of lst (elt n is average of lst[0:n])

Ex: average([1, 3, 5, 7]) returns [1.0, 2.0, 3.0, 4.0]

Precond: lst is a list of all numbers"""
result = []                  # actual accumulator    
sum = 0; count = 0    # accumulator “helpers”
for x in lst:

sum = sum+x; count = count+1
result.append(sum/count)

return result
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Accumulators: The Old Way

def average(lst):
"""Returns a running average of lst (elt n is average of lst[0:n])

Ex: average([1, 3, 5, 7]) returns [1.0, 2.0, 3.0, 4.0]

Precond: lst is a list of all numbers"""
result = []                  # actual accumulator    
sum = 0; count = 0    # accumulator “helpers”
for x in lst:

sum = sum+x; count = count+1
result.append(sum/count)

return result

Allows multiple 
assignments per line
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Generators: The New Way

def average(input):
"""Generates a running average of input

Ex: input 1, 3, 5, 7 yields 1.0, 2.0, 3.0, 4.0

Precond: input is a iterable of all numbers"""
sum = 0       # accumulator “helper”
count = 0     # accumulator “helper”
for x in lst:

sum = sum+x
count = count+1
yield sum/count
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Chaining Generators

• Generators can be chained together
§ Take an iterator/iterable as input
§ Produce an iterator as output
§ Output of one generator = input of another

• Powerful programming technique

11/29/22 Generators 39

evens average add_one outputinput



Simple Chaining

>>> a = [1, 2, 3, 4]                             # Start w/ any iterable
>>> b = add_one(average(evens(a))) # Apply right to left
>>> c = list(b)                                   # Convert to list/tuple
>>> c
[3.0, 4.0]

evens average add_one outputinput
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Simple Chaining

>>> a = [1, 2, 3, 4]                             # Start w/ any iterable
>>> b = add_one(average(evens(a))) # Apply right to left
>>> c = list(b)                                   # Convert to list/tuple
>>> c
[3.0, 4.0]

evens average add_one outputinput
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Natural way to process 
data streams



Why Do We Care?

• Stream programming is an advanced topic
§ Involves chaining together many generators
§ Will see this again if go on to 3110

• But we have an application in A7!
§ Remember that GUIs are like iterator classes
§ Game app runs with an “invisible” loop
§ All loop variables implemented as attributes
§ Generators are a way to simplify all this
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Why Do We Care?

• Stream programming is an advanced topic
§ Involves chaining together many generators
§ Will see this again if go on to 3110

• But we have an application in A7!
§ Remember that GUIs are like iterator classes
§ Game app runs with an “invisible” loop
§ All loop variables implemented as attributes
§ Generators are a way to simplify all this
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Unfortunately 
out of scope ths year


