
Generators

Lecture 27

Announcements for This Lecture

Assignments Finishing Up

• Submit a course evaluation
§ Will get an e-mail for this
§ Part of the “participation

grade” (e.g. polling grade)
• Final, Dec 13th 2-4:30 pm

§ Study guide is posted
• Conflict with Final Exam?

§ e.g. > 2 finals in 24 hours
§ Submit conflicts to CMS

11/29/22 2Generators

• A6 is now graded
§ Mean: 88.2 Median: 92
§ Std Dev: 13.4
§ Mean: 17.5 hr Median: 15 hr
§ Std Dev: 9 hr

• A7 due December 7th
§ Should be moving asteroids
§ Extensions via lab instructor
§ Can work in Lab Thu/Fri

Recall: The Range Iterable

range(x)

• Creates an iterable
§ Can be used in a for-loop

§ Makes ints (0, 1, ... x-1)

• But it is not a tuple!
§ A black-box for numbers

§ Entirely used in for-loop

§ Contents of folder hidden

Example

>>> range(3)
range(0,3)
>>> for x in range(3)
… print(x)
0
1
2

11/29/22 Generators 3

Recall: The Range Iterable

range(x)

• Creates an iterable
§ Can be used in a for-loop

§ Makes ints (0, 1, ... x-1)

• But it is not a tuple!
§ A black-box for numbers

§ Entirely used in for-loop

§ Contents of folder hidden

Example

>>> range(3)
range(0,3)
>>> for x in range(3)
… print(x)
0
1
2

Iterable: Anything that
can be used in a for-loop

11/29/22 Generators 4

Iterators: Iterables Outside of For-Loops

• Iterators can manually extract elements
§ Get each element with the next() function
§ Keep going until you reach the end
§ Ends with a StopIteration (Why?)

• Can create iterators with iter() function
>>> a = iter([1,5,3])
>>> next(a)
1
>>> next(a)
5

Must be a
iterable

11/29/22 Generators 5

Iterators Can Be Used in For-Loops

>>> a = iter([1,2])
>>> for x in a:
…. print(x)
….
1
2
>>> for x in a:
…. print(x)
….
>>>

Technically, iterators
are also iterable

But they are
one-use only!

11/29/22 Generators 6

Iterators are Classes

class range2iter(object):
"""Iterator class for squares of a range"""
Attribute _limit: end of range
Attribute _pos: current spot of iterator
…
def __next__(self):

"""Returns the next element"""
if self._pos >= self._limit:

raise StopIteration()
else:

value = self._pos*self._pos
self._pos += 1
return value

11/29/22 Generators 7

Iterators are Classes

class range2iter(object):
"""Iterator class for squares of a range"""
Attribute _limit: end of range
Attribute _pos: current spot of iterator
…
def __next__(self):

"""Returns the next element"""
if self._pos >= self._limit:

raise StopIteration()
else:

value = self._pos*self._pos
self._pos += 1
return value

Defines the
next() fcn

11/29/22 Generators 8

Iterators are Classes

class range2iter(object):
"""Iterator class for squares of a range"""
Attribute _limit: end of range
Attribute _pos: current spot of iterator
…
def __next__(self):

"""Returns the next element"""
if self._pos >= self._limit:

raise StopIteration()
else:

value = self._pos*self._pos
self._pos += 1
return value

How far to go

How far we are

Raise error when
gone too far

11/29/22 Generators 9

Iterators are Classes

class range2iter(object):
"""Iterator class for squares of a range"""
Attribute _limit: end of range
Attribute _pos: current spot of iterator
…
def __next__(self):

"""Returns the next element"""
if self._pos >= self._limit:

raise StopIteration()
else:

value = self._pos*self._pos
self._pos += 1
return value

Essentially a
loop variable

Update “loop” after
doing computation

11/29/22 Generators 10

Iterables are Also Classes

class range2(object):
"""Iterable class for squares of a range"""

def __init__(self,n):
"""Initializes a squares iterable"""
self._limit = n

def __iter__(self):
"""Returns a new iterator"""
return range2iter(self._limit)

Defines the
iter() function

11/29/22 Generators 11Returns an iterable

Iterables are Also Classes

class range2(object):
"""Iterable class for squares of a range"""

def __init__(self,n):
"""Initializes a squares iterable"""
self._limit = n

def __iter__(self):
"""Returns a new iterator"""
return range2iter(self._limit)

Iterables are objects
that generate

iterators on demand

11/29/22 Generators 12

Iterators are Hard to Write!

• Has the same problem as GUI applications
§ We have a hidden loop
§ All loop variables are now attributes
§ Similar to inter-frame/intra-frame reasoning

• Would be easier if loop were not hidden
§ Idea: Write this as a function definition
§ Function makes loop/loop variables visible

• But iterators “return” multiple values
§ So how would this work?

11/29/22 Generators 13

The Wrong Way

def range2iter(n):
"""
Iterator for the squares of numbers 0 to n-1

Precondition: n is an int >= 0
"""
for x in range(n):

return x*x Stops at the
first value

11/29/22 Generators 14

The yield Statement

• Format: yield <expression>
§ Used to produce a value
§ But it does not stop the “function”
§ Useful for making iterators

• But: These are not normal functions
§ Presence of a yield makes a generator
§ Function that returns an iterator

11/29/22 Generators 15

The Generator approach

def range2iter(n):
"""
Generator for the squares
of numbers 0 to n-1

Precon: n is an int >= 0
"""
for x in range(n):

yield x*x

>>> a = range2iter(3)
>>> a
<generator object>
>>> next(a)
0
>>> next(a)
1
>>> next(a)
4

Essentially
a constructor

11/29/22 Generators 16

What Happens on a Function Call?

No call
frame

Creates
a generator

11/29/22 Generators 17

next() Initiates a Function Call

Frame for
next()

Comes from
original call

11/29/22 Generators 18

Call Finishes at the yield

yield is return
for next()

11/29/22 Generators 19

Later Calls Resume After the yield

Next call returns
to where it left off

From last
time

11/29/22 Generators 20

Exception is Made Automatically

Exception when
generator is done

11/29/22 Generators 21

Return Statements Make Exceptions

Exception when
generator is done

11/29/22 Generators 22
Return Value

Activity: Call Frame Time

Function Defintions

def rnginv(n): #Inverse range
for x in range(1,n):

yield 1/x

def harmonic(n): #Harmonic sum
sum = 0
g = rnginv(n)
for x in g:

sum = sum+x
return x

Function Call

>>> x = harmonic(2)
Assume we are here:

11/29/22 Generators 23

20
19

32
33
34
35
36

Ignoring the heap,
what is the next step?

harmonic 342n

0sum id3g

Which One is Closest to Your Answer?

A: B:

C: D:

rnginv 19

11/29/22 Generators 24

harmonic 342n

0sum id3g

2n

harmonic 342n

0sum id3g 1x

rnginv 20

harmonic 342n

0sum id3g

2n

1x 1YIELD

rnginv 20

harmonic 342n

0sum id3g

2n

1x

Which One is Closest to Your Answer?

A: B:

C: D:

rnginv 19

11/29/22 Generators 25

harmonic 342n

0sum id3g

2n

harmonic 342n

0sum id3g 1x

rnginv 20

harmonic 342n

0sum id3g

2n

1x 1YIELD

rnginv 20

harmonic 342n

0sum id3g

2n

1x

E:

¯_(ツ)_/¯

Activity: Call Frame Time

Function Defintions

def rnginv(n): #Inverse range
for x in range(1,n):

yield 1/x

def harmonic(n): #Harmonic sum
sum = 0
g = rnginv(n)
for x in g:

sum = sum+x
return x

Function Call

>>> x = harmonic(2)
A:

11/29/22 Generators 26

20
19

32
33
34
35
36

A:

rnginv 19

harmonic 342n

0sum id3g

2n

What is the next step?

Which One is Closest to Your Answer?

A: B:

C: D:

11/29/22 Generators 27

rnginv 21

harmonic 342n

0sum id3g

2n

1x 1YIELD

rnginv 20

harmonic 342n

0sum id3g

2n

1x

harmonic 342n

0sum id3g 1x

rnginv 20

harmonic 342n

0sum id3g

2n

1x 1YIELD

Activity: Call Frame Time

Function Defintions

def rnginv(n): #Inverse range
for x in range(1,n):

yield 1/x

def harmonic(n): #Harmonic sum
sum = 0
g = rnginv(n)
for x in g:

sum = sum+x
return x

Function Call

>>> x = harmonic(2)
B:

11/29/22 Generators 28

20
19

32
33
34
35
36

What is the next step?

rnginv 20

harmonic 342n

0sum id3g

2n

1x

Which One is Closest to Your Answer?

A: B:

C: D:

11/29/22 Generators 29

rnginv

harmonic 342n

0sum id3g

2n

1x 1RETURN

harmonic 342n

0sum id3g

harmonic 342n

0sum id3g 1x

rnginv

harmonic 342n

0sum id3g

2n

1x 1YIELD

1x

rnginv 192n

1x 1YIELD

Activity: Call Frame Time

Function Defintions

def rnginv(n): #Inverse range
for x in range(1,n):

yield 1/x

def harmonic(n): #Harmonic sum
sum = 0
g = rnginv(n)
for x in g:

sum = sum+x
return x

Function Call

>>> x = harmonic(2)
D:

11/29/22 Generators 30

20
19

32
33
34
35
36

rnginv

harmonic 342n

0sum id3g

2n

1x 1RETURN

Generators Are Easy

• They replace the accumulator pattern
§ Function input is an iterable (string, list, tuple)
§ Function output typically a transformed copy
§ Old way: Accumulate a new list or tuple
§ New way: Yield one element at a time

• New way makes an iterator (not iterable)
§ So can only be used once!
§ But easily turned into a list or tuple

11/29/22 Generators 31

Accumulators: The Old Way

def add_one(lst):
"""Returns copy with 1 added to every element

Precond: lst is a list of all numbers"""
copy = [] # accumulator
for x in lst:

x = x +1
copy.append(x)

return copy
11/29/22 Generators 32

Generators: The New Way

def add_one(input)
"""Generates 1 added to each element of input

Precond: input is a iterable of all numbers"""

for x in input :
yield x +1

Much
Simpler!

yield eliminates
the accumlator

11/29/22 Generators 33

Accumulators: The Old Way

def evens(lst):
"""Returns a copy with even elements only

Precond: lst is a list of all numbers"""
copy = [] # accumulator
for x in lst:

if x % 2 == 0:
copy.append(x)

return copy
11/29/22 Generators 34

Generators: The New Way

def evens(input):
"""Generates only the even elements of input

Precond: input is a iterable of all numbers"""

for x in input:
if x % 2 == 0:

yield x

11/29/22 Generators 35

Accumulators: The Old Way

def average(lst):
"""Returns a running average of lst (elt n is average of lst[0:n])

Ex: average([1, 3, 5, 7]) returns [1.0, 2.0, 3.0, 4.0]

Precond: lst is a list of all numbers"""
result = [] # actual accumulator
sum = 0; count = 0 # accumulator “helpers”
for x in lst:

sum = sum+x; count = count+1
result.append(sum/count)

return result
11/29/22 Generators 36

Accumulators: The Old Way

def average(lst):
"""Returns a running average of lst (elt n is average of lst[0:n])

Ex: average([1, 3, 5, 7]) returns [1.0, 2.0, 3.0, 4.0]

Precond: lst is a list of all numbers"""
result = [] # actual accumulator
sum = 0; count = 0 # accumulator “helpers”
for x in lst:

sum = sum+x; count = count+1
result.append(sum/count)

return result

Allows multiple
assignments per line

11/29/22 Generators 37

Generators: The New Way

def average(input):
"""Generates a running average of input

Ex: input 1, 3, 5, 7 yields 1.0, 2.0, 3.0, 4.0

Precond: input is a iterable of all numbers"""
sum = 0 # accumulator “helper”
count = 0 # accumulator “helper”
for x in lst:

sum = sum+x
count = count+1
yield sum/count

11/29/22 Generators 38

Chaining Generators

• Generators can be chained together
§ Take an iterator/iterable as input
§ Produce an iterator as output
§ Output of one generator = input of another

• Powerful programming technique

11/29/22 Generators 39

evens average add_one outputinput

Simple Chaining

>>> a = [1, 2, 3, 4] # Start w/ any iterable
>>> b = add_one(average(evens(a))) # Apply right to left
>>> c = list(b) # Convert to list/tuple
>>> c
[3.0, 4.0]

evens average add_one outputinput

11/29/22 Generators 40

Simple Chaining

>>> a = [1, 2, 3, 4] # Start w/ any iterable
>>> b = add_one(average(evens(a))) # Apply right to left
>>> c = list(b) # Convert to list/tuple
>>> c
[3.0, 4.0]

evens average add_one outputinput

11/29/22 Generators 41

Natural way to process
data streams

Why Do We Care?

• Stream programming is an advanced topic
§ Involves chaining together many generators
§ Will see this again if go on to 3110

• But we have an application in A7!
§ Remember that GUIs are like iterator classes
§ Game app runs with an “invisible” loop
§ All loop variables implemented as attributes
§ Generators are a way to simplify all this

11/29/22 Generators 42

Why Do We Care?

• Stream programming is an advanced topic
§ Involves chaining together many generators
§ Will see this again if go on to 3110

• But we have an application in A7!
§ Remember that GUIs are like iterator classes
§ Game app runs with an “invisible” loop
§ All loop variables implemented as attributes
§ Generators are a way to simplify all this

11/29/22 Generators 43

Unfortunately
out of scope ths year

