Lecture 26

Advanced Sorting

Announcements for This Lecture

Assignment \& Lab

Optional Videos

- A6 is not graded yet
- Done early next week
- Survey still open today
- A7 due Mon, Dec. 5
- Extensions are possible
- Contact your lab instructor
- Lab Today: Office Hours
- Get help on A7 Planetoids
- Anyone can go to any lab

Recall Our Problem

- Both insertion, selection sort are nested loops
- Outer loop over each element to sort
- Inner loop to put next element in place
- Each loop is n steps. $\mathrm{n} \times \mathrm{n}=\mathrm{n}^{2}$
- To do better we must eliminate a loop
- But how do we do that?
- What is like a loop? Recursion!
- First need an intermediate algorithm

The Partition Algorithm

- Given a list segment $\mathrm{b}[\mathrm{h} . \mathrm{k}]$ with some value x in $\mathrm{b}[\mathrm{h}]$:
\square Start: b x ?
- Swap elements of $\mathrm{b}[\mathrm{h} . \mathrm{k}]$ to get this answer

	i i+1			k
Goal: b	<= x	x	>= x	

k

$$
7
$$

change:

- x is called the pivot value
- x is not a program variable
- denotes value initially in $b[h]$

Or
11/22/22

Designing the Partition Algorithm

- Given a list $\mathrm{b}[\mathrm{h} . \mathrm{k}]$ with some value x in $\mathrm{b}[\mathrm{h}]$:
\square
- Swap elements of $b[h . . k]$ to get this answer

k

In-Progress: b | $<=\mathrm{x}$ | x | ? | $>=\mathrm{x}$ |
| :--- | :--- | :--- | :--- |

Indices b, h important!
Might partition only part

Implementating the Partition Algorithm

def partition(b, h, k):
"""Partition list b[h..k] around a pivot $x=b[h]$ """
$\mathrm{i}=\mathrm{h} ; \mathrm{j}=\mathrm{k}+\mathrm{l} ; \mathrm{x}=\mathrm{b}[\mathrm{h}]$
while i < $\mathrm{j}-\mathrm{l}$:
if $b[i+1]>=x$: \# Move to end of block. $\operatorname{swap}(b, i+1, j-1)$ $j=j-1$
else: \# b[i+1] < x
swap(b,i,i+l)
$\mathrm{i}=\mathrm{i}+1$
return i

Partition Algorithm Implementation

def partition(b, h, k):
"""Partition list b[h..k] around a pivot $\mathrm{x}=\mathrm{b}[\mathrm{h}]$ """
$\mathrm{i}=\mathrm{h} ; \mathrm{j}=\mathrm{k}+\mathrm{l} ; \mathrm{x}=\mathrm{b}[\mathrm{h}]$

$<=\mathbf{x}$	\mathbf{x}	?	$>=\mathrm{x}$	
h	1	i+1		k
12	3	150	63	8

while $\mathrm{i}<\mathrm{j}-\mathrm{l}$:
if $b[i+1]>=x$:
\# Move to end of block.
swap(b,i+1,j-1)
$j=j-1$
else: \#b[i+l] < x
swap(b,i,i+l)
$\mathrm{i}=\mathrm{i}+\mathrm{l}$
return i

Partition Algorithm Implementation

def partition(b, h, k):
"""Partition list b[h..k] around a pivot $x=b[h]$ """
$\mathrm{i}=\mathrm{h} ; \mathrm{j}=\mathrm{k}+\mathrm{l} ; \mathrm{x}=\mathrm{b}[\mathrm{h}]$
while i < $\mathrm{j}-\mathrm{l}$:
if $b[i+1]>=x$:
\# Move to end of block.

$<=\mathbf{x}$	\mathbf{x}	?	$>=\mathrm{x}$	
h	i	i+1	j	k
12	3	150	63	8

$\operatorname{swap}(b, i+1, j-1)$
$j=j-1$
else: \# b[i+1] < x
$\operatorname{swap}(\mathrm{b}, \mathrm{i}, \mathrm{i}+\mathrm{l})$
$\mathrm{i}=\mathrm{i}+\mathrm{l}$
return i

Partition Algorithm Implementation

def partition(b, h, k):
"""Partition list b[h..k] around a pivot $x=b[h]$ """
$\mathrm{i}=\mathrm{h} ; \mathrm{j}=\mathrm{k}+\mathrm{l} ; \mathrm{x}=\mathrm{b}[\mathrm{h}]$
while i < $\mathrm{j}-\mathrm{l}$:
if $b[i+1]>=x$:
\# Move to end of block.

$<=\mathbf{x}$	\mathbf{x}	?	$>=\mathbf{x}$
h	i	i+1	k
12	3	150	638

$\operatorname{swap}(b, i+1, j-1)$
$j=j-1$
else: \# b[i+l] < x
swap(b,i,i+l)
$\mathrm{i}=\mathrm{i}+1$

return i

Partition Algorithm Implementation

def partition(b, h, k):
"""Partition list b[h..k] around a pivot $x=b[h]$ """
$\mathrm{i}=\mathrm{h} ; \mathrm{j}=\mathrm{k}+\mathrm{l} ; \mathrm{x}=\mathrm{b}[\mathrm{h}]$
while i < $\mathrm{j}-\mathrm{l}$:
if $b[i+1]>=x$:
\# Move to end of block.
$\operatorname{swap}(b, i+1, j-1)$
$j=j-1$
else: \# b[i+1] < x
swap(b,i,i+l)
$\mathrm{i}=\mathrm{i}+1$
return i

Why is this Useful?

- Will use this algorithm to replace inner loop
- The inner loop cost us n swaps every time
- Can this reduce the number of swaps?
- Worst case is k-h swaps
- This is n if partitioning the whole list
- But less if only partitioning part
- Idea: Break up list and partition only part?
- This is Divide-and-Conquer!

Sorting with Partitions

- Given a list segment $\mathrm{b}[\mathrm{h} . . \mathrm{k}]$ with some value x in $\mathrm{b}[\mathrm{h}]$:

- Swap elements of $\mathrm{b}[\mathrm{h} . \mathrm{k}]$ to get this answer

Sorting with Partitions

- Given a list segment $\mathrm{b}[\mathrm{h} . . \mathrm{k}]$ with some value x in $\mathrm{b}[\mathrm{h}]$:

- Swap elements of $\mathrm{b}[\mathrm{h} . \mathrm{k}]$ to get this answer

Sorting with Partitions

- Given a list segment $\mathrm{b}[\mathrm{h} . . \mathrm{k}]$ with some value x in $\mathrm{b}[\mathrm{h}]$:

- Swap elements of $\mathrm{b}[\mathrm{h} . \mathrm{k}]$ to get this answer

QuickSort

def quick_sort(b, h, k):
"""Sort the array frasment b[h..k]"""
if $b[h . k]$ has fewer than 2 elements:
return
$j=\operatorname{partition}(b, h, k)$
\# b[h..j-l] <= b[j] <= b[j+l..k]
\# Sort b[h.j-l] and b[j+l..k]
quick_sort (b, h, j-l)
quick_sort (b, j+l, k)

- Worst Case: array already sorted
- Or almost sorted
- n^{2} in that case
- Average Case: array is scrambled
- $\mathrm{n} \log \mathrm{n}$ in that case
- Best sorting time!

So Does that Solve It?

- Worst case still seems bad! Still n ${ }^{2}$
- But only happens in small number of cases
- Just happens that case is common (already sorted)
- Can greatly reduce issue with randomization
- Swap start with random element in list
- Now pivot is random and already sorted unlikely

So Does that Solve It?

- Worst case still seems bad! Still n^{2}
- But only happens in small number of cases
- Just ha
- Can gre: Makes it "good enough" for most applications
- Swap
- Now pivot is random and already sorted unlikely

Can We Do Better?

- Recursion seems to be the solution
- Partitioned the list into two halves
- Recursively sorted each half
- How about a traditional divide-and-conquer?
- Divide the list into two halves
- Recursively sort the two halves
- Combine the two sort halves
- How do we do the last step?

Combining Two Sorted Lists

Combining Two Sorted Lists

Pick from list with the least

Combining Two Sorted Lists

Pick from list with the least

Combining Two Sorted Lists

Pick from list with the least

Combining Two Sorted Lists

Pick from list with the least

Combining Two Sorted Lists

Pick from list with the least

Combining Two Sorted Lists

Pick from list with the least

Combining Two Sorted Lists

Pick from list with the least

Combining Two Sorted Lists

Pick from list with the least

Combining Two Sorted Lists

Pick from list with the least

Combining Two Sorted Lists

10

Pick from list with the least

Combining Two Sorted Lists

Combining Two Sorted Lists

Combining Two Sorted Lists

Merge Sort

def merge_sort(b, h, k):
"""Sort the array frasment b[h..k]"""
if $b[h . \mathrm{k}]$ has fewer than 2 elements: return
\# Divide and recurse
$\operatorname{mid}=(h+k) / / 2$
merge_sort (b, h, m)
merge_sort (b, m+l, k)
\# Combine
merge(b,h,mid,k) \# Merge halves into b

Merge Sort

def merge_sort(b, h, k):
"""Sort the array frasment b[h..k]"""
if b[h.k] has fewer than 2 elements: return
\# Divide and recurse
$\operatorname{mid}=(h+k) / / 2$
merge_sort (b, h, m)
merge_sort (b, m+l, k)
\# Combine
merge(b,h,mid,k) \# Merge halves into b

- Seems simpler than qisort
- Straight-forward d\&c
- Merge easy to implement
- What is the catch?
- Merge requires a copy
- We did not allow copies
- Copying takes $\mathrm{O}(\mathrm{n})$ time
- But so does merge/partition
- O(n log n) ALWAYS

Proof beyond scope of course

What Does Python Use?

- The sort() method is Timsort
- Invented by Tim Peters in 2002
- Combination of insertion sort and merge sort
- Why a combination of the two?
- Merge sort requires copies of the data
- Copying pays off for large lists, but not small lists
- Insertion sort is not that slow on small lists
- Balancing two properly still gives $n \log n$

What Does Python Use?

- The sort() method is Timsort

Quicksort is 1959 !

- Invented by Tim Peters in 2002
- Combination of insertion sort and merge sort
- Why a combination of the two?
- Merge sort requires copies of the data
- Copying pays off for large lists, but not small lists
- Insertion sort is not that slow on small lists
- Balancing two properly still gives $n \log n$

What Does Python Use?

- The sort() method is Timsort
- Invented by Tim Peters in 2002
- Combination of insertion sort and merge sort
- Why a combination of the two?
- Merge sort requires copies of the data

Most of time spent here

- Copying pays off for large lists, but not small lists
- Insertion sort is not that slow on small lists
- Balancing two properly still gives $n \log n$

