Recall Our Problem

11/28/21

e Both insertion, selection sort are nested loops
= Quter loop over each element to sort
= Inner loop to put next element in place
= Each loop is n steps. nXn =n?
* To do better we must eliminate a loop
= But how do we do that?
= What is like a loop? Recursion!

= First need an intermediate algorithm

The Partition Algorithm

e Given a list segment b[h..k] with some value x in b[h]:
h k
Start: b ‘ X ‘ ? ‘

e Swap elements of b[h. k] to get this answer
W :

il k
Goal: b ‘ <=x ‘X ‘ >=X ‘
h k
change: b [354162381
h ; X e xis called the pivot value

into b|121354638 = X is not a program variable

h i K = denotes value initially in b[h]

or bl123134568

Designing the Partition Algorithm

¢ Given a list b[h. k] with some value x in b[h]:
h k
Start: b ‘ X ‘ ? ‘

¢ Swap elements of b[h. k] to get this answer
h

ii+l k

Goal: b ‘ <=X ‘x ‘ >=X ‘

h i j k

In-Progress: b ‘ <=X ‘x ‘ ? ‘ >=X ‘

Indices b, h important!

Might partition only part

Implementating the Partition Algorithm

def partition(b, h, k):
"Partition list b[h..k] around a pivot x = b[h]""
i=h;j=k+l;x=b[h]

while i <j-1:
i bli+1]>=x: partition(b,h k), not partition(b[h:k+1])

Move to end of block.

swap(b,i+1,j-1)

j=j-1 We want to partition the original list

Remember, slicing always copies the list!

else: #Db[i+]l]<x
swap(b,i,i+1)
i=i+1

return i

Partition Algorithm Implementation

def partition(b, h, k): <=xX|x ? >=X
""" Partition list b(h..k] around a pivot x = b[h]"" h i|i+l j k
1=b;j=k+1;x = bib] [1 2]3]1 5 0]6 3 3]
while i <j1: h ->i i+l j k
I b[i+1] >=x: [1 2 1[3][5 0]6 3 8]
Move to end of block. A
swap(b,i+1j-1) h i je Kk
=-1 [1 2 1[3]0]5 6 3 5]
else: #Db[i+l]<x
swap(b,i,i+1)
i=i+1 h >ij k
[1210[3]563 8]
return i A

Why is this Useful?

* Will use this algorithm to replace inner loop
= The inner loop cost us n swaps every time
* Can this reduce the number of swaps?
= Worst case is k-h swaps
= This is n if partitioning the whole list
= But less if only partitioning part
* Idea: Break up list and partition only part?

= This is Divide-and-Conquer!

Sorting with Partitions

¢ Given a list segment b[h..k] with some value x in b[h]:
h k
Start: b ‘ X ‘ ? ‘

¢ Swap elements of b[h. k] to get this answer
h il K

Goal: b <=y [y][>=y [x] o= x ‘

Partition Recursively

Recursive partitions = sorting
= Called QuickSort (why???)

= Popular, fast sorting technique

So Does that Solve It?

e Worst case still seems bad! Still n?
= But only happens in small number of cases
= Just happens that case is common (already sorted)
* Can greatly reduce issue with randomization
= Swap start with random element in list
= Now pivot is random and already sorted unlikely
h i k
Start: b | x | ? ly] ? |

Yo A

Merge Sort

def merge_sort(b, h, k): * Seems simpler than gsort

"Sort the array fragment b{h..k]"" = Straight-forward d&c
= Merge easy to implement

e What is the catch?

= Merge requires a copy

if b[h..k] has fewer than 2 elements:
return

Divide and recurse = We did not allow copies

mid = (h+k)//&

merge_sort (b, h, m)

= Copying takes O(n) time
= But so does merge/partition
* nlogn ALWAYS

merge_sort (b, m+1, k)
Proof beyond

Combine

scope of course

merge(b,h,mid k) # Merge halves into b

QuickSort

Worst Case:
array already sorted

= Or almost sorted
if b[h..k] has fewer than 2 elements: = 12 in that case

def quick_sort(b, h, k):
""Sort the array fragment b[h..k]""

Average Case:
array is scrambled
= nlog n in that case

return
j = partition(b, h, k)
bh..j-1] <= Db[j] <= b[j+1..K]
Sort bh.j-1] and b[j+1.k] h
quick_sort (b, h, j-1)

= Best sorting time!

quick_sort (b, j+1, k)

Can We Do Better?

e Recursion seems to be the solution
= Partitioned the list into two halves
= Recursively sorted each half
e How about a traditional divide-and-conquer?
= Divide the list into two halves
= Recursively sort the two halves

= Combine the two sort halves

* How do we do the last step?

10

What Does Python Use?

« The sort() method is Timsort
= Invented by Tim Peters in 2002
= Combination of insertion sort and merge sort
* Why a combination of the two?
= Merge sort requires copies of the data
= Copying pays off for large lists, but not small lists

= Insertion sort is not that slow on small lists

= Balancing two properly still gives n log n

11

12

