
10/31/21

1

Case Study: Fractions

• Want to add a new type
§ Values are fractions: ½, ¾
§ Operations are standard

multiply, divide, etc.
§ Example: ½*¾ = ⅜

• Can do this with a class
§ Values are fraction objects
§ Operations are methods

• Example: frac1.py

class Fraction(object):
"""Instance is a fraction n/d"""
INSTANCE ATTRIBUTES:
_numerator: an int
_denominator: an int > 0

def __init__(self,n=0,d=1):
"""Init: makes a Fraction"""
self._numerator = n
self._denominator = d

1

Problem: Doing Math is Unwieldy

What We Want

1
2
+
1
3
+
1
4
∗
5
4

What We Get

>>> p = Fraction(1,2)
>>> q = Fraction(1,3)
>>> r = Fraction(1,4)
>>> s = Fraction(5,4)
>>> (p.add(q.add(r))).mult(s)

This is confusing!

Why not use the
standard Python
math operations?

2

Operator Overloading

• Many operators in Python a special symbols
§ +, -, /, *, ** for mathematics
§ ==, !=, <, > for comparisons

• The meaning of these symbols depends on type
§ 1 + 2 vs 'Hello' + 'World'
§ 1 < 2 vs 'Hello' < 'World'

• Our new type might want to use these symbols
§ We overload them to support our new type

3

Returning to Fractions

What We Want

1
2 +

1
3 +

1
4 ∗

5
4

Operator Overloading

• Python has methods that
correspond to built-in ops
§ __add__ corresponds to +
§ __mul__ corresponds to *

§ __eq__ corresponds to ==
§ Not implemented by default

• To overload operators you
implement these methods

Why not use the
standard Python
math operations?

4

Operator Overloading: Multiplication

class Fraction(object):
"""Instance is a fraction n/d"""
_numerator: an int
_denominator: an int > 0

def __mul__(self,q):
"""Returns: Product of self, q
Makes a new Fraction; does not
modify contents of self or q
Precondition: q a Fraction"""
assert type(q) == Fraction
top= self._numerator*q._numerator
bot= self._denominator*q._denominator
return Fraction(top,bot)

>>> p = Fraction(1,2)
>>> q = Fraction(3,4)
>>> r = p*q

>>> r = p.__mul__(q)

Python
converts to

Operator overloading uses
method in object on left.

5

Operator Overloading: Addition

class Fraction(object):
"""Instance is a fraction n/d""”
_numerator: an int
_denominator: an int > 0

def __add__(self,q):
"""Returns: Sum of self, q
Makes a new Fraction
Precondition: q a Fraction"""
assert type(q) == Fraction
bot= self._denominator*q._denominator
top= (self._numerator*q._denominator+

self._denominator*q._numerator)
return Fraction(top,bot)

>>> p = Fraction(1,2)
>>> q = Fraction(3,4)
>>> r = p+q

>>> r = p.__add__(q)

Python
converts to

Operator overloading uses
method in object on left.

6

10/31/21

2

Comparing Objects for Equality

• Earlier in course, we saw ==
compare object contents
§ This is not the default
§ Default: folder names

• Must implement __eq__
§ Operator overloading!
§ Not limited to simple

attribute comparison
§ Ex: cross multiplying

1 2
2 4

class Fraction(object):
"""Instance is a fraction n/d"""
_numerator: an int
_denominator: an int > 0

def __eq__(self,q):
"""Returns: True if self, q equal,
False if not, or q not a Fraction"""
if type(q) != Fraction:

return False
left = self._numerator*q._denominator
rght = self._denominator*q._numerator
return left == rght

4 4

7

is Versus ==

• p is q evaluates to False
§ Compares folder names
§ Cannot change this

• p == q evaluates to True
§ But only because method

__eq__ compares contents

id2
Point

id2p id3q

x 2.2

y

z

5.4

6.7

id3
Point

x 2.2

y

z

5.4

6.7

Always use (x is None) not (x == None)

8

Recall: Overloading Multiplication

class Fraction(object):
"""Instance is a fraction n/d"""
_numerator: an int
_denominator: an int > 0

def __mul__(self,q):
"""Returns: Product of self, q
Makes a new Fraction; does not
modify contents of self or q
Precondition: q a Fraction"""
assert type(q) == Fraction
top = self._numerator*q._numerator
bot= self._denominator*q._denominator
return Fraction(top,bot)

>>> p = Fraction(1,2)
>>> q = 2 # an int
>>> r = p*q

>>> r = p.__mul__(q) # ERROR

Python
converts to

Can only multiply fractions.
But ints “make sense” too.

9

Solution: Look at Argument Type

• Overloading use left type
§ p*q => p.__mul__(q)
§ Done for us automatically
§ Looks in class definition

• What about type on right?
§ Have to handle ourselves

• Can implement with ifs
§ Write helper for each type
§ Check type in method
§ Send to appropriate helper

class Fraction(object):
…
def __mul__(self,q):

"""Returns: Product of self, q
Precondition: q a Fraction or int"""
if type(q) == Fraction:

return self._mulFrac(q)
elif type(q) == int:

return self._mulInt(q)
…
def _mulInt(self,q): # Hidden method

return Fraction(self._numerator*q,
self._denominator)

10

A Better Multiplication

class Fraction(object):
…
def __mul__(self,q):

"""Returns: Product of self, q
Precondition: q a Fraction or int"""
if type(q) == Fraction:

return self._mulFrac(q)
elif type(q) == int:

return self._mulInt(q)
…
def _mulInt(self,q): # Hidden method

return Fraction(self._numerator*q,
self._denominator)

>>> p = Fraction(1,2)
>>> q = 2 # an int
>>> r = p*q

>>> r = p.__mul__(q) # OK!

Python
converts to

See frac3.py for a full
example of this method

11

We Have Come Full Circle

• On the first day, saw that a type is both
§ a set of values, and
§ the operations on them

• In Python, all values are objects
§ Everything has a folder in the heap
§ Just ignore it for immutable, basic types

• In Python, all operations are methods
§ Each operator has a double-underscore helper
§ Looks at type of object on left to process

12

