An Application

10/31/21

* Goal: Presentation program (e.g. PowerPoint)
* Problem: There are many types of content

= Examples: text box, rectangle, image, etc.

= Have to write code to display each one
* Solution: Use object oriented features

= Define class for every type of content

= Make sure each has a draw method:

for x in slide[i].contents:
| x.draw(window)

.
class SlideContent(object):

Abbreviate Defining a Subclass
as SC to right
""Any object on a slide.""

Superclass
Parent class SlideContent
Base class
def __init_ (self, x, y, w, h): ...
def draw_frame(self): ... Subclass (
def select(self): ... Child class TextBox fmege
Derived class

class TextBox(SlideContent):
"""An object containing text.""
def __init_ (self, x, y, text): ...
def draw(self): ...

class Image(SlideContent):
"™AR image™
def __init_ (self, x, y, image_file): .
def draw(self): ...

Class Definition: Revisited

class <name>(<superclass>):

Class specification i e

getters and setters iy e LSS Wi e

initializer (__init_)

* Every class must
extend something

* Previous classes all
extended object

definition of operators

definition of methods

anything else

object and the Subclass Hierarcy

* Subclassing creates a Kivy Example
hierarchy of classes
= Each class has its own object
super class or parent Kivy.uix widge WidgetBase
= Until object at the “top” vy uix widget. Widges,
* object has many features
= Special built-in fields: kivy.uix label. Label
_ class_ ,_ diet_

= Default operators:
_ ste repr__

Pa—

Name Resolution Revisited

¢ To look up attribute/method name
1. Look first in instance (object folder)

2. Then look in the class (folder)

* Subclasses add two more rules:
3. Look in the superclass
4. Repeat 3. until reach object

P fext

A Simpler Example

class Employee(object):
""Instance is salaried worker""
INSTANCE ATTRIBUTES:

_name: full name, a string

_start: first year hired,

anint =-1,-1 if unknown

_salary: yearly wage, a float

class Executive(Employee):

"""An Employee with a bonus""
INSTANCE ATTRIBUTES:
#_bonus: annual bonus, a float

Method Overriding

e Which __str__ do we use?
= Start at bottom class folder
= Find first method with name
= Use that definition

¢ New method definitions

override those of parent
= Access to old version is lost
= New version used instead
= Example: __init

About super()

* super() is very limited
= Can only go one level
= BAD: super().super()

* Need arguments for more

= super(class,self)

super().__!

The subclass thoe bﬂ,{: tthlgd
P
super(Exec,self).__ste__()
Empl object
@ _str 0 5 _str O

ste__() super(Bmpl,self).__str__()

9
Instance Attributes are (Often) Inherited
class Employee(object): id4
def __init__(self,n,d,s=50000.0):
self._name =n _name -'Fred' Created in
self. _starc =d Dmtyes
= _start | 2012 initiali
self._salary = s initiatizer
_salary [5000
lass Executive(Employee): bonus
Created in
def __init__(self,n,d,b=0.0): Executive
‘ super().__init__(n,d) initializer
self._bonus =b
11

10/31/21

Accessing the “Previous” Method

* What if you want to use the
original version method?

= Do not want to repeat code
from the original version

¢ Use the function super()

= Now methods go to the class
* Example:

self goes here

= New method = original+more

= “Converts” type to parent class

class Employee(object):
"""An Employee with a salary""

def __str__(self):
return (self._name +
', year ' + str(self._start) +
', salary ' + str(self._salary))

class Executive(Employee):
""An Employee with a bonus.""

def __str__(self):
return (super().__str__(
+', bonus ' + str(self._bonus))

Primary Application: Initializers

class Employee(object):

def __init__(self,n,d,s=50000.0):
self._name =n

self._start = d

self._salary = s

lass Executive(Employee):

def __init__(self,n,d,b=0.0):
super().__init__(n,d)
self._bonus = b

10

Also Works With

Class Attributes

Class Attribute: Assigned outside of any method definition

class Employee(object):
"""Instance is salaried worker""
Class Attribute

STD_SALARY = 50000.0

class Executive(Employee):
"""An Employee with a bonus.""”
Class Attribute

STD_BONUS = 10000.0

12

