
Lists (& Sequences)

Lecture 12

Announcements for Today

(Optional) Videos Assignments

• A3 due next Monday
§ No lab time
§ Start now if you haven’t

already
§ There are only a few

chances left to get help!
§ Thursday evening, Friday

office hours, Sunday and
Monday evening

10/5/21 Lists & Sequences 2

• Prelim, 10/6 at 7:30 pm
§ Material up to TODAY
§ Study guide is posted
§ Times/rooms by last name

• Conflict with Prelim time?
§ Submit conflict to CMS
§ Applies to SDS students too

• Videos 15.1-15.7 for today
• Videos 16.1-16.7 next time

Using Try-Except

try:
result = input('Number: ') # get number
x = float(result) # convert to float
print('The next number is '+str(x+1))

except:
print('That is not a number!')

Similar to if-else
§ But always does the try block
§ Might not do all of the try block

9/27/22 Asserts & Error Handling 3

Using Try-Except

try:
result = input('Number: ') # get number
x = float(result) # convert to float
print('The next number is '+str(x+1))

except:
print('That is not a number!')

Similar to if-else
§ But always does the try block
§ Might not do all of the try block

9/27/22 Asserts & Error Handling 4

Conversion
may crash!

Execute if crashes

Try-Except is Very Versatile

def isfloat(s):
"""Returns: True if string
s represents a float"""
try:

x = float(s)
return True

except:
return False

9/27/22 Asserts & Error Handling 5

Conversion to a
float might fail

If attempt succeeds,
string s is a float

Otherwise, it is not

Try-Except and the Call Stack

recover.py

def function_1(x,y):
try:

return function_2(x,y)
except:

return float('inf')

def function_2(x,y):
return function_3(x,y)

def function_3(x,y):
return x/y # crash here

• Error “pops” frames off stack
§ Starts from the stack bottom
§ Continues until it sees that

current line is in a try-block
§ Jumps to except, and then

proceeds as if no error

9/27/22 Asserts & Error Handling 6

function_1

function_2

function_3
pops

pops
line in a try

Try-Except and the Call Stack

recover.py

def function_1(x,y):
try:

return function_2(x,y)
except:

return float('inf')

def function_2(x,y):
return function_3(x,y)

def function_3(x,y):
return x/y # crash here

• Error “pops” frames off stack
§ Starts from the stack bottom
§ Continues until it sees that

current line is in a try-block
§ Jumps to except, and then

proceeds as if no error
• Example:

>>> print function_1(1,0)
inf
>>>

9/27/22 Asserts & Error Handling 7

No traceback!

How to return
∞ as a float.

Tracing Control Flow

def first(x):
print('Starting first.')
try:

second(x)
except:

print('Caught at first')
print('Ending first')

def second(x):
print('Starting second.')
try:

third(x)
except:

print('Caught at second')
print('Ending second')

def third(x):
print('Starting third.')
assert x < 1
print('Ending third.')

What is the output of first(2)?

9/27/22 Asserts & Error Handling 8

Tracing Control Flow

def first(x):
print('Starting first.')
try:

second(x)
except:

print('Caught at first')
print('Ending first')

def second(x):
print('Starting second.')
try:

third(x)
except:

print('Caught at second')
print('Ending second')

def third(x):
print('Starting third.')
assert x < 1
print('Ending third.')

What is the output of first(2)?

9/27/22 Asserts & Error Handling 9

'Starting first.'
'Starting second.'
'Starting third.'
'Caught at second'
'Ending second'
'Ending first'

Tracing Control Flow

def first(x):
print('Starting first.')
try:

second(x)
except:

print('Caught at first')
print('Ending first')

def second(x):
print('Starting second.')
try:

third(x)
except:

print('Caught at second')
print('Ending second')

def third(x):
print('Starting third.')
assert x < 1
print('Ending third.')

What is the output of first(0)?

9/27/22 Asserts & Error Handling 10

Tracing Control Flow

def first(x):
print('Starting first.')
try:

second(x)
except:

print('Caught at first')
print('Ending first')

def second(x):
print('Starting second.')
try:

third(x)
except:

print('Caught at second')
print('Ending second')

def third(x):
print('Starting third.')
assert x < 1
print('Ending third.')

What is the output of first(0)?

9/27/22 Asserts & Error Handling 11

'Starting first.'
'Starting second.'
'Starting third.'
'Ending third'
'Ending second'
'Ending first'

Sequences: Lists of Values

String

• s = 'abc d'

• Put characters in quotes
§ Use \' for quote character

• Access characters with []
§ s[0] is 'a'
§ s[5] causes an error
§ s[0:2] is 'ab' (excludes c)
§ s[2:] is 'c d'

List

• x = [5, 6, 5, 9, 15, 23]

• Put values inside []
§ Separate by commas

• Access values with []
§ x[0] is 5
§ x[6] causes an error
§ x[0:2] is [5, 6] (excludes 2nd 5)
§ x[3:] is [9, 15, 23]

10/5/21 Lists & Sequences 12

a b c d

0 1 2 3 4

5 6 5 9 15

0 1 2 3 4

23

5

Sequences: Lists of Values

String

• s = 'abc d'

• Put characters in quotes
§ Use \' for quote character

• Access characters with []
§ s[0] is 'a'
§ s[5] causes an error
§ s[0:2] is 'ab' (excludes c)
§ s[2:] is 'c d'

List

• x = [5, 6, 5, 9, 15, 23]

• Put values inside []
§ Separate by commas

• Access values with []
§ x[0] is 5
§ x[6] causes an error
§ x[0:2] is [5, 6] (excludes 2nd 5)
§ x[3:] is [9, 15, 23]

10/5/21 Lists & Sequences 13

a b c d

0 1 2 3 4

5 6 5 9 15

0 1 2 3 4

23

5

Sequence is name given to both

Lists Have Methods Similar to String

• index(value)
§ Return position of the value
§ ERROR if value is not there
§ x.index(9) evaluates to 3

• count(value)
§ Returns number of times value appears in list
§ x.count(5) evaluates to 2

10/5/21 Lists & Sequences 14

x = [5, 6, 5, 9, 15, 23]
But you get length of
a list with a regular
function, not method:

len(x)

Representing Lists

Wrong Correct

10/5/21 Lists & Sequences 15

x = [5, 7, 4,-2]

id1x

id1

0
1
2
3

5
7
4
-2

5, 6, 7, -2x

Box is “too small”
to hold the list

Put list in
a “folder”

Unique tab
identifier

Variable
holds id

Lists vs. Class Objects

List

• Attributes are indexed
§ Example: x[2]

RGB

• Attributes are named
§ Example: c.red

10/5/21 Lists & Sequences 16

id2x

id3

red 128

green 64

blue 255

RGB
id2

0
1
2
3

5
7
4
-2

list

id3c

When Do We Need to Draw a Folder?

• When the value contains other values
§ This is essentially want we mean by ‘object’

• When the value is mutable

10/5/21 Lists & Sequences 17

Type Container? Mutable?
int No No

float No No
str Yes* No

Point3 Yes Yes
RGB Yes Yes
list Yes Yes

Lists are Mutable

• List assignment:
<var>[<index>] = <value>
§ Reassign at index
§ Affects folder contents
§ Variable is unchanged

• Strings cannot do this
§ s = 'Hello World!'
§ s[0] = 'J' ERROR
§ String are immutable

• x = [5, 7,4,-2]

• x[1] = 8

10/5/21 Lists & Sequences 18

-2

0 1 2 3

475

id1x

id1

0
1
2
3

5
7
4
-2

Lists are Mutable

• List assignment:
<var>[<index>] = <value>
§ Reassign at index
§ Affects folder contents
§ Variable is unchanged

• Strings cannot do this
§ s = 'Hello World!'
§ s[0] = 'J' ERROR
§ String are immutable

• x = [5, 7,4,-2]

• x[1] = 8

10/5/21 Lists & Sequences 19

-2

0 1 2 3

475

id1x

id1

0
1
2
3

5
7
4
-2

8

x 8

x

Slice Assignment

• Can embed a new list inside of a list
§ Syntax: <var>[<start>:<end>] = <list>
§ Replaces that range with content of list

• Example:
>>> a = [1,2,3]
>>> b = [4,5]
>>> a[:2] = b
>>> a
[4, 5, 3]

Replaces [1,2]
with [4,5]

10/5/21 Lists & Sequences 20

List Methods Can Alter the List

• append(value)
§ A procedure method, not a fruitful method
§ Adds a new value to the end of list
§ x.append(-1) changes the list to [5, 6, 5, 9, -1]

• insert(index, value)
§ Put the value into list at index; shift rest of list right
§ x.insert(2,-1) changes the list to [5, 6, -1, 5, 9,]

• sort()
10/5/21 Lists & Sequences 21

x = [5, 6, 5, 9]

List Methods Can Alter the List

• append(value)
§ A procedure method, not a fruitful method
§ Adds a new value to the end of list
§ x.append(-1) changes the list to [5, 6, 5, 9, -1]

• insert(index, value)
§ Put the value into list at index; shift rest of list right
§ x.insert(2,-1) changes the list to [5, 6, -1, 5, 9,]

• sort()
10/5/21 Lists & Sequences 22

x = [5, 6, 5, 9]

What do you think this does?

Where To Learn About List Methods?

In the documentation!

10/5/21 Lists & Sequences 23

swap(x, 3, 4)

Lists and Functions: Swap

1. def swap(b, h, k):
2. """ Swaps b[h] and b[k] in b
3. Precond: b is a mutable list,
4. h, k are valid positions"""
5. temp= b[h]
6. b[h]= b[k]
7. b[k]= temp

Swaps b[h] and b[k],
because parameter b
contains name of list.

id4

x id4
10/5/21 24Lists & Sequences

swap

b id4 h 3

k 4

5 0
1
2
3

5
4
7
6

4 5

Lists and Functions: Swap

1. def swap(b, h, k):
2. """ Swaps b[h] and b[k] in b
3. Precond: b is a mutable list,
4. h, k are valid positions"""
5. temp= b[h]
6. b[h]= b[k]
7. b[k]= temp

Swaps b[h] and b[k],
because parameter b
contains name of list.

id4

x id4
10/5/21 25Lists & Sequences

swap

b id4 h 3

k 4

6

temp 6

0
1
2
3

5
4
7
6

4 5
swap(x, 3, 4)

Lists and Functions: Swap

1. def swap(b, h, k):
2. """ Swaps b[h] and b[k] in b
3. Precond: b is a mutable list,
4. h, k are valid positions"""
5. temp= b[h]
6. b[h]= b[k]
7. b[k]= temp

Swaps b[h] and b[k],
because parameter b
contains name of list.

id4

x id4
10/5/21 26Lists & Sequences

swap

b id4 h 3

k 4

7

temp 6

0
1
2
3

5
4
7
6

4 5
5✗swap(x, 3, 4)

Lists and Functions: Swap

1. def swap(b, h, k):
2. """ Swaps b[h] and b[k] in b
3. Precond: b is a mutable list,
4. h, k are valid positions"""
5. temp= b[h]
6. b[h]= b[k]
7. b[k]= temp

Swaps b[h] and b[k],
because parameter b
contains name of list.

id4

x id4
10/5/21 27Lists & Sequences

swap

b id4 h 3

k 4temp 6

0
1
2
3

5
4
7
6

4 5
5
6✗

swap(x, 3, 4) ✗

List Slices Make Copies

10/5/21 Lists & Sequences 28

x = [5, 6, 5, 9] y = x[1:3]

id5x

id5

0
1
2
3

5
6
5
9

list

id6y

id6

0
1

6
5

list

copy = new folder

Exercise Time

• Execute the following:
>>> x = [5, 6, 5, 9, 10]
>>> x[3] = -1
>>> x.insert(1,2)

• What is x[4]?

10/5/21 Lists & Sequences 29

A: 10
B: 9
C: -1
D: ERROR
E: I don’t know

Exercise Time

• Execute the following:
>>> x = [5, 6, 5, 9, 10]
>>> x[3] = -1
>>> x.insert(1,2)

• What is x[4]?

• Execute the following:
>>> x = [5, 6, 5, 9, 10]
>>> y = x[1:]
>>> y[0] = 7

• What is x[1]?

10/5/21 Lists & Sequences 30

-1
A: 7
B: 5
C: 6
D: ERROR
E: I don’t know

Exercise Time

• Execute the following:
>>> x = [5, 6, 5, 9, 10]
>>> x[3] = -1
>>> x.insert(1,2)

• What is x[4]?

• Execute the following:
>>> x = [5, 6, 5, 9, 10]
>>> y = x[1:]
>>> y[0] = 7

• What is x[1]?

10/5/21 Lists & Sequences 31

-1 6

Lists and Expressions

• List brackets [] can
contain expressions

• This is a list expression
§ Python must evaluate it
§ Evaluates each expression
§ Puts the value in the list

• Example:
>>> a = [1+2,3+4,5+6]
>>> a
[3, 7, 11]

• Execute the following:
>>> a = 5
>>> b = 7
>>> x = [a, b, a+b]

• What is x[2]?

10/5/21 Lists & Sequences 32

A: 'a+b'
B: 12
C: 57
D: ERROR
E: I don’t know

Lists and Expressions

• List brackets [] can
contain expressions

• This is a list expression
§ Python must evaluate it
§ Evaluates each expression
§ Puts the value in the list

• Example:
>>> a = [1+2,3+4,5+6]
>>> a
[3, 7, 11]

• Execute the following:
>>> a = 5
>>> b = 7
>>> x = [a, b, a+b]

• What is x[2]?

10/5/21 Lists & Sequences 33

12

Lists of Objects

• List positions are variables
§ Can store base types
§ But cannot store folders
§ Can store folder identifiers

• Folders linking to folders
§ Top folder for the list
§ Other folders for contents

• Example:
>>> r = introcs.RGB(255,0,0)
>>> g = introcs.RGB(0,255,0)
>>> b = introcs.RGB(0,0,255)
>>> x = [r,g,b]

10/5/21 Lists & Sequences 34

id10

red 255

green 0

blue 0

RGB id11

red 0

green 255

blue 0

RGB

id12

red 0

green 0

blue 255

RGB

id13x

id13

0
1
2

id10
id11
id12

list

id12g

id11b

id10r

Lists of Objects

• List positions are variables
§ Can store base types
§ But cannot store folders
§ Can store folder identifiers

• Folders linking to folders
§ Top folder for the list
§ Other folders for contents

• Example:
>>> r = introcs.RGB(255,0,0)
>>> g = introcs.RGB(0,255,0)
>>> b = introcs.RGB(0,0,255)
>>> x = [r,g,b]

10/5/21 Lists & Sequences 35

id10

red 255

green 0

blue 0

RGB id11

red 0

green 255

blue 0

RGB

id12

red 0

green 0

blue 255

RGB

id13x

id13

0
1
2

id10
id11
id12

list

id12g

id11b

id10r

