Lecture 12

Lists (& Sequences)

Announcements for Today

(Optional) Videos Assignments

Videos 15.1-15.7 for today * A3 due next Monday
Videos 16.1-16.7 next time

= No lab time

e Prelim, 10/6 at 7:30 pm = Start now if you haven’t
= Material up to TODAY already
* Study guide is posted = There are only a few
= Times/rooms by last name chances left to get help!

e Conflict with Prelim time? = Thursday evening, Friday
* Submit conflict to CMS office hours, Sunday and
= Applies to SDS students too Monday evening

10/5/21 Lists & Sequences

Using Try-Except

try:

result = input('Number:) # get number
x = float(result) # convert to float
print('The next number is '+str(x+1))

except:

9/27/22

print('That is not a number!)

Similar to if-else
= But always does the try block
= Might not do all of the try block

Asserts & Error Handling

Using Try-Except

try:

. Conversion
result = input('Number:) # ge EENETERS e

x = float(result) # cciavert to float
print('The next number is '+str(x+1))

)

‘ print('That is not a number!'

Similar to if-else
= But always does the try block
= Might not do all of the try block

9/27/22 Asserts & Error Handling

Try-Except is Very Versatile

def isfloat(s):
"""Returns: True if string
s represents a float""" 4 . A
Conversion to a

try: / ! float might fail)

x = float(s) s A
If attempt succeeds,

return True < | string sis a float

except:

‘ return False <« Otherwise, it 1s not

9/27/22 Asserts & Error Handling

Try-Except and the Call Stack

recover.py * Error “pops” frames oft stack

. = Starts from the stack bottom
def function_1(x,y):

= Continues until 1t sees that

try:
return function_2(x.y) current line 1s 1n a try-block
except: = Jumps to except, and then
return float('inf") proceeds as if no error

def function_2(x.y): linematry| function_l

I return function_3(x.y) neton o pops
unctuion

def function_3(x,y): function 3 POpS

I return x/y # crash here

9/27/22 Asserts & Error Handling

Try-Except and the Call Stack

recover.py

def function_1(x,y):

try:

return function_g2
except:

returr@oa,t('inf'))

def function_2(x,y):
I return function_3(x.y)

def function_3(x,y):
I return x/y # crash here

e _Error “pops

” frames off stack

How to return om the stack bottom

o as a float. es until it sees that

 Example:

inf
>>>

9/27/22

Asserts & Error Handling

...
- current line is 1n a try-block

= Jumps to except, and then
proceeds as if no error

>>> print function_1(1,0)

[No traceback!]

Tracing Control Flow

def first(x): def third(x):
print('Starting first.") print('Starting third.")
try: assert x <1
second(x) print('"Ending third.")
except:
print('Caught at first')))
orint(‘Ending first) What is the output of first(2)?
def second(x):
print('Starting second.")
try:
third(x)
except:

print('Caught at second")

print('"Ending second")

9/27/22 Asserts & Error Handling

Tracing Control Flow

def first(x): def third(x):
print(‘Starting first.") print('Starting third.")
try: assert x <1
second(x) print('"Ending third.")
except:
print('Caught at first')) .
orint(Ending first) What is the output of first(2)?
def second(x): 'Starting first.'
print('Starting second.") ‘Starting second.’
try: 'Starting third.'
third(x) 'Caught at second'
eXcept: 'Ending second'
print('Caught at second’) . .
print('"Ending second") Ending first'

9/27/22 Asserts & Error Handling

Tracing Control Flow

def first(x):
print('Starting first.")
try:

second(x)
except:

print(‘Caught at first')
print('"Ending first")

def second(x):
print('Starting second.")
try:
third(x)
except:
print('Caught at second")

print('"Ending second")

def third(x):
print('Starting third.")
assert x <1
print('"Ending third.")

What is the output of first(0)?

9/27/22

Asserts & Error Handling

10

Tracing Control Flow

def first(x): def third(x):
print(‘Starting first.") print('Starting third.")
try: assert x <1
second(x) print('"Ending third.")
except:
print('Caught at first')) .
orint(Ending first) What is the output of first(0)?
def second(x): 'Starting first.'
print('Starting second.") ‘Starting second.’
try: 'Starting third.'
third(x) 'Ending third'
eXcept: 'Ending second'
print('Caught at second’) . .
print('"Ending second") Ending first'
9/27/22 Asserts & Error Handling

11

Sequences: Lists of Values

String

List

e s="gbcd'
O 1 2 3 4

al| bl c d

e Put characters in quotes

= Use \' for quote character

e Access characters with []
= g[0]is 'a’
= g[B] causes an error
= g[0:2] is 'ab' (excludes ¢)
= glR:]is'ed
10/5/21

- x=[5,6,5,9, 15, 23]

0

1

2

3

4

5

5

6

5

9

15

23

e Put values inside [|

= Separate by commas

e Access values with []
= x[0]is &

= X[6] causes an error

= x[0:]is [B, 6] (excludes 2™ B)

= x[&:]1s[9, 185, 3]

Lists & Sequences

Sequences: Lists of Values

String List
e s="abcd' e X=[5,6,5,9, 15, 23]
0 1 2 3 4 0 1 2 3 4 5
a|b|c d 5/6(5]9]15]23
e Put characters in quotes e Put values inside [|

= Use \' for quote character

e Access chj : jven 10 both vith []

= g[5] causey — = Xx[6] causes an error
= g[0:2] is 'ab' (excludes ¢) = x[0:]is [B, 6] (excludes 2™ B)
= g[R:]1s 'cd' = x[3:]1s[9, 15, %3]
10/5/21 Lists & Sequences 13

Lists Have Methods Similar to String

x=[5,6,5,9,15,23] |

e index(value)

= Return position of the value
= KRROR if value is not there
= x.index(9) evaluates to 3

e count(value)

But you get length of
a list with a regular
function, not method:

len(x)

= Returns number of times value appears 1n list

= x.count(d) evaluates to 2

10/5/21 Lists & Sequences

14

Representing Lists

10/5/21

Wrong Correct
X 5, 6, 7, -2 x| i1d1 Unique tab
/ identifier
Variable id1
holds id
Box is “too small” 0 |5
to hold the list 1|7
2 | 4
3 | -2

X = [5, '?, 4a-2]

Put list in
a “folder”

Lists & Sequences

15

Lists vs. Class Objects

List

RGB

e Attributes are indexed
= Example: x[?]

10/5/21

X

Al OO — O

id2

id2

list

e Attributes are named
= Example: c.red
C id3

id3

RGB

red 128

green | 64

blue R55

Lists & Sequences

16

When Do We Need to Draw a Folder?

e When the value contains other values

= This 1s essentially want we mean by ‘object’

* When the value 1s mutable

10/5/21

Type
int
float
str
Point3
RGB
list

No
No
Yes*
Yes
Yes
Yes

Lists & Sequences

No
No
No
Yes
Yes
Yes

17

Lists are Mutable

e List assignment: * x=[3, 7,4,-]]

. 0 1 2 3
<var>[<index>] = <value>

5 7 4 | =2

= Reassign at index
= Affects folder contents

e X[1]=8
" Variable is unchanged
e Strings cannot do this Oidls
= g = "'Hello World!' x | idl 1 |7
= g[0] ='d" ERROR i f‘z

= String are immutable

10/5/21 Lists & Sequences

Lists are Mutable

e List assignment: * Xx=[5, 7,4,-]]
<var>[<index>] = <value> oot
. . 5 IX | 4|-2
= Reassign at index -
= Affects folder contents x[1]=8
" Variable is unchanged
e Strings cannot do this 01d15
= g ="Hello World!' x| idl 1 | X8
= 5[0] ='d" ERROR i 42

= String are immutable

10/5/21 Lists & Sequences

Slice Assignment

 Can embed a new list inside of a list
" Syntax: <var>[<start>:<end>] = <list>
= Replaces that range with content of list

 Example:

>>> g =[1,%,3]

>>> b = [4,5] Replaces [1,3]
>>> g[:d] =b with [4,5]
>>> 9,

[4, 5, 3]

10/5/21 Lists & Sequences

List Methods Can Alter the List

[x=[5, 8, B, 9]]

e append(value)
= A procedure method, not a fruitful method

= Adds a new value to the end of list
= x.append(-1) changes the list to [5, 6, 5, 9, -1]

e insert(index, value)
= Put the value into list at index; shift rest of list right

= x.insert(2,-1) changes the list to [5, 6, -1, 5, 9,]
* sort()

10/5/21 Lists & Sequences 21

List Methods Can Alter the List

[x=[5, 8, B, 9]]

e append(value)
= A procedure method, not a fruitful method

= Adds a new value to the end of list
= x.append(-1) changes the list to [5, 6, 5, 9, -1]

e insert(index, value)
= Put the value into list at index; shift rest of list right

= x.insert(2,-1) changes the list to [5, 6, -1, 5, 9,]

OOM What do you think this does?

10/5/21 Lists & Sequences 22

Where To Learn About List Methods?

5.1. More on Lists

The list data type has some more methods. Here are all of the methods of list objects:

list.append(x)
Add an item to the end of the list. Equivalent to a[len(a):] = [x].

list.extend(iterable)

Extend the list by appending all the items from th In the documentation !

list. insert(/, x)

Insert an item at a given position. The first argument is the index of the element before which to in-
sert, sO a.insert (0, x) inserts at the front of the list, and a.insert(len(a), x) is equivalent to
a.append(x).

list. remove(x)
Remove the first item from the list whose value is equal to x. It raises a ValueError if there is no
such item.

1ist. pop([])
Remove the item at the given position in the list, and return it. If no index is specified, a.pop() re-
moves and returns the last item in the list. (The square brackets around the jin the method signa-
ture denote that the parameter is optional, not that you should type square brackets at that position.
You will see this notation frequently in the Python Library Reference.)

10/5/21 Lists & Sequences

23

Lists and Functions: Swap

1. def swap(b, h, k):

_. """ Swaps b[h] and b[k] in b

3. Precond: b is a mutable list,

4, h, k are valid positions"""

5. temp= b[h]

6. b[h]= b[k]

7. b[k]= temp swap S

b id4 h| 3

(swap(x, 3, 4)) ki 4

10/5/21 Lists & Sequences

Swaps b[h] and b[k],
because parameter b
contains name of list.

id4

B &1 20 —~ O
NN || =] W

X id4

24

Lists and Functions: Swap

1. def swap(b, h, k):

_. """ Swaps b[h] and b[k] in b

3. Precond: b is a mutable list,

4, h, k are valid positions"""

5. temp= b[h]

6. b[h]= b[k]

7. b[k]= temp swap 6

b id4 h| 3

(swa,p(x, 3, 4)) temp | © k| 4

10/5/21 Lists & Sequences

Swaps b[h] and b[k],
because parameter b
contains name of list.

id4

B &1 20 —~ O
NN || =] W

X id4

25

Lists and Functions: Swap

1. def swap(b, h, k):

_. """ Swaps b[h] and b[k] in b

3. Precond: b is a mutable list,

4, h, k are valid positions"""

5. temp= b[h]

6. b[h]= b[k]

7. b[k]= temp swap 7

b id4 h| 3

(swa,p(x, 3, 4)) temp | © k| 4

10/5/21 Lists & Sequences

Swaps b[h] and b[k],
because parameter b
contains name of list.

id4

B &1 20 —~ O
UIX\]-BLJ]
)

X id4

26

Lists and Functions: Swap

def swap(b, h, k):
" Swaps b[h] and b[k] in b
Precond: b is a mutable list,
h, k are valid positions""
temp= b[h]
b[h]= b[k]

N o O s R

b[k]= temp swap

b id4 h| 3

(swa,p(x, 3, 4)) temp | © k| 4

10/5/21 Lists & Sequences

Swaps b[h] and b[k],
because parameter b
contains name of list.

id4
0|5
1 |4
2 |7
3 | K 5
4 X 6

X id4

27

List Slices Make Copies

x=[9, 6, 5, 9] y=x[1:3]
x| id5 y | id6
id5 id6
list list
0 |5 0 |6
1 |6 1 |5
2 |5
3 |9

copy = new folder

10/5/21 Lists & Sequences

Exercise Time

* Execute the following:
>>>x=[8§,6,5,9, 10]
>>> x[3] =-1
>>> x.insert(1,2)

e What is x[4]?

A: 10

\O

B:

C: -1

D: ERROR
E: I don’t know

10/5/21 Lists & Sequences

Exercise Time

* Execute the following: * Execute the following:
>>>x =[5, 6, 5,9, 10] >>>x =[5, 6, 5,9, 10]
>>>x[3] =-1 >>>y =x[1:]
>>> x.insert(1,2) >>>y[0] =7

e What is x[4]? e What is x[1]?

4) AT
_ 1 B:5
C:6
N——r’ D: ERROR
E: I don’t know

10/5/21 Lists & Sequences

30

Exercise Time

* Execute the following: * Execute the following:
>>>x=[5,6,5,9, 10] >>>x=[5,6,5,9, 10]
>>>x[38] =-1 >>>y =Xx[1:]
>>> x.insert(1,2) >>>y[0] =7

e What is x[4]? e What is x[1]?

4) 4)
_ / _ /

10/5/21 Lists & Sequences

Lists and Expressions

e List brackets [] can
contain expressions

e This is a list expression

= Python must evaluate it

* Execute the following:

>>>g9 =25

= Evaluates each expression © W

= Puts the value in the list

* Example:

>>> g = [1+48,8+4,5+0]
>>> g,

[8, 7, 11]

10/5/21

Lists & Sequences

>>>h="Y

>>>x = [a, b, a+b]

nat 1s x[2]?

A: 'at+b’

B: 12

C: 57

D: ERROR

E: I don’t know

32

Lists and Expressions

e List brackets [] can * Execute the following:
contain expressions >>>g,= 5
e This is a list expression >>>p =17
= Python must evaluate it >>>x = [a, b, a+b]

= Evaluates each expression * What 1s x[2]?

= Puts the value in the list

* Example: g A
>>> g, =[1+2,5+4,5+0] 1 2
>>> g _ J
[3, 7, 11]

10/5/21 Lists & Sequences

Lists of Objects

e List positions are variables

= (Can store base types

= But cannot store folders

b
= (Can store folder identifiers g
X

e Folders linking to folders
= Top folder for the list

= Qther folders for contents 1d10

* Example:
>>>p = introcs.RGB(R55,0,0)
>>> ¢ = introcs.RGB(0,255,0)
>>> D = introcs.RGB(0,0,255)
>>>x = [r,8,b]

10/5/21

r | id10
id11
id12
id13
RGB id11
RGB
red 255
red 0
green| O
green | 355
blue 0
blue 0

Lists & Sequences

id13

list

id10

id11

id12

id12

red

RGB

green| O

blue | 55

Lists of Objects

e List positions are variables id13
= (Can store base types r list
= But cannot store folders b | idll _Jid10
= Can store folder identifiers g | 1dl12 /,/'f 4 id11
e Folders linking to folders x| id13 | " 2 [ia12
= Top folder for the list //"/ // %
= Other folders for contents ~ id10 £ , &/’ 112 ¥
RGB id11 RGB
* Example: RGB
»>>1 = inirocs ROB(285,0,0) T4 (288 == T L2
>>> g = introcs.RGB(0,255,0) ~ green| O green | O
>>>b = introcs RGB(O,0,255) pue | 0 | oo ool bue | 255
>>>x = [r,g,b] blue 0

10/5/21 Lists & Sequences 35

