
Last Name: UTION First Name: SOL Cornell NetID: CS1110

Solution: CS 1110 Prelim 2 — April 22, 2014

1. [2 points] When allowed to begin, write your last name, first name, and Cornell NetID at the
top of each page.

Solution: Every time a student doesn’t do this, somewhere, a kitten weeps.

More seriously, we sometimes have exams come apart during grading, so it is actually important
to write your name on each page.

2. [10 points] Recursion. Recall the Node class from A3. Each node has a contacted by attribute
consisting of a (possibly empty) list of nodes that have contacted it, and we know that anything
in a node’s contacted by list is from an earlier generation. This question asks you to add a
new method for class Node; implement it according to its specification. Your solution must be
recursive, though it can involve for-loops as well.

class Node(object):

...

def is_downstream_from(self, older):

"""Returns True if: older is in this node's contacted_by list, OR if

at least one of the nodes in this node's contacted_by list is

downstream from older. Returns False otherwise.

Pre: older is a node.

"""

Do NOT compute the legacy of older (it doesn't even help to do so if

self is not converted). You do NOT need to do any caching or check

if nodes are converted or not.

Solution:

if self.contacted_by == []:

return False

elif older in self.contacted_by:

return True

else:

for contacter in self.contacted_by:

if contacter.is_downstream_from(older):

return True

If we get to this line, no contacter was downstream of older

return False

+1 for first base case concept

+1 for second base case concept

+1 for using self correctly throughout

+1 looping through each contacter

+2 recursive call idea [this should be all or nothing, probably]

Last Name:UTION First Name: SOL Cornell NetID: CS1110

+2 correct syntax (method means contacter-dot, older should be the argument again)

+1 return True in correct recursive case

+1 return False when all checks fail

Example: In the figure below, (2,0) is downstream from (0,1), (0,2), (0,4), and (1,1), but no
other nodes.

Page 2

Last Name:UTION First Name: SOL Cornell NetID: CS1110

3. [6 points] While-loops. Write a function that does the same thing as product for but uses
a while-loop.

def product_for(x):

"""Return: the product of the numbers in x.

Pre: x is a list of integers.

"""

p = 1

for n in x:

p *= n

return p

def product_while(x):

"""Same specification as above."""

Solution:

i = 0

p = 1

while i < len(x):

p *= x[i]

i += 1

return p

Counting backwards would also be fine.

+1 for each initialization, the condition, the body, the increment,

and the return (that is, 1 for each line)

4. [8 points] While-loops. Implement the strip function so that it meets its specification, using
two non-nested while-loops: one starting from the beginning of the string and moving right, and
then one starting from the end of the string and moving left.

Your implementation may not use the Python built-ins strip, lstrip, or rstrip.

def strip(s1, s2=' '):

"""Return a new string that is s1 but with the occurrences of characters in s2

removed from the ends.

Pre: s1 contains at least one character not in s2.

Examples: strip(' te st ') == 'te st'

strip('batestb', 'ab') == 'test'

strip('test ') == 'test'

strip('banana', 'nab') violates the precondition.

"""

Hint: the precondition means your loops can't "fall off" the other end.

Solution:

Page 3

Last Name:UTION First Name: SOL Cornell NetID: CS1110

h = 0

inv: s[0..h-1] is in s2

while s1[h] in s2:

h += 1

We now know that s1[h] is not in s2.

k = len(s1)

inv: s[k..len(s)-1] is in s2

while s1[k-1] in s2:

k -= 1

We now know that s1[k-1] is not in s2.

return s1[h:k] # returns s[h..k-1]

Also possible to have j mean "next thing to check" , in which case

j should start at len(s1)-1, loop condition is while s1[j] in s2,

return s1[h:j+1]

For each while loop:

+1 for correct init, +1 for correct loop condition, +1 for increment

The "return" line is worth two points, one for each increment.

##

ALTERNATE SOLUTION WITHOUT EXPLICIT INDEXING

while s1[0] in s2:

s1 = s1[1:]

while s1[len(s1)-1] in s2:

s1 = s1[:len(s1)-1]

return s1

Page 4

Last Name:UTION First Name: SOL Cornell NetID: CS1110

5. [12 points] Classes and objects. The three classes Course, Student, and Schedule that
are printed on a separate handout are part of the Registrar’s new course enrollment database,
which keeps track of which courses each student is enrolled in, and also which students are
enrolled in each course. Two methods are not implemented: Student.add course (line 96),
which updates the database to reflect a student enrolling in a course, and Student.validate

(line 106), which checks a student’s schedule to make sure it follows the rules.

Read the code to become familiar with the design and operation of these classes. Note that
helper methods and a unit test included, which may help in understanding how these classes
are used and in solving the problems below.

After reading the code, implement the two incomplete methods by filling in your code below.
Write your answers on this sheet, not on the code printout (where there is no space to fit your
answer).

class Student(object):

...

def add_course(self, course):

"""See the code for the specification."""

Solution:

course.students.append(self)

self.schedules[0].courses.append(course)

2 for first line:

+1 for accessing students list

+1 for appending correctly.

3 for second line:

+1 for accessing schedules list

+1 for then accessing courses list

+1 for appending correctly.

...

def validate(self, credit_limit):

"""See the code for the specification."""

Solution:

Page 5

Lillian Lee
see last pages of this file

Lillian Lee

Last Name:UTION First Name: SOL Cornell NetID: CS1110

valid = True

for sched in self.schedules[1:]:

if sched.overlaps(self.schedules[0]):

valid = False

return valid and (self.schedules[0].total_credits() <= credit_limit)

Various other ways to structure the logic are possible.

5 for computing overlap boolean

+1 for loop over the right part of schedules

+1 for calling Schedule.overlaps correctly

+1 for calling it with the right argument

+2 for logic that returns False if any are true

2 for enforcing total credits limit

+1 for calling Schedule.total_credits on the right thing

+1 for logic that returns False if limit is exceeded

Page 6

Last Name:UTION First Name: SOL Cornell NetID: CS1110

6. [8 points] Loop invariants. Each of the following can be fixed with a one-line change to the
code. Fix each method by crossing out only one line and rewriting it to the right, so that
the code is consistent with the invariant.

def partition(b, z):

i = 0

j = len(b)-1

inv: b[0..i-1] <= z and b[j..] > z

while i != j:

if b[i] <= z:

i += 1

else:

j -= 1

b[i], b[j] = b[j], b[i]

post: b[0..j-1] <= z and b[j..] > z

return j

Solution: Change j = len(b)-1 to j = len(b). 2 pts (all or none) for correcting the right
line; 2 pts (all or none) for the right correction.

def partition2(b, z):

i = -1

j = len(b)

inv: b[0..i] <= z and b[j..] > z

while i != j:

if b[i+1] <= z:

i += 1

else:

b[i+1], b[j-1] = b[j-1], b[i+1]

j -= 1

post: b[0..j-1] <= z and b[j..] > z

return j

Solution: Change i != j to i != j-1. 2 pts (all or none) for correcting the right line; 2 pts
(all or none) for the right correction.

Did you write your name & netID on each page, and carefully re-read all instructions and
specifications? Did you mentally test your code against the examples, where provided?

Page 7

 1 # enroll.py
 2 # Steve Marschner (srm2) and Lillian Lee (ljl2)
 3 """CS1110 Prelim 2: Module for tracking student enrollment in courses."""
 4
 5 class Course(object):
 6 """An instance represents an offering of a course at Cornell. There is a
 7 separate Course instance for each semester in which a course is offered.
 8 Each course also keeps track of the students who are enrolled.
 9
 10 Instance variables:
 11 title [str] -- title of course
 12 credits [int] -- number of credits
 13 students [list of Student] -- list of students enrolled in this course
 14 """
 15
 16 def __init__(self, title, credits):
 17 """A new course with the given title and number of credits.
 18 The course starts out with no students enrolled.
 19 Pre: title is a string (e.g., 'CS1110: Awesome Introduction to Python')
 20 credits is a positive integer
 21 """
 22 self.title = title
 23 self.credits = credits
 24 self.students = []
 25
 26
 27 class Schedule(object):
 28 """Instances represent a student's schedule for one semester.
 29
 30 Instance variables:
 31 student [Student] -- the student whose schedule this is
 32 semester [str] -- the semester this schedule is for
 33 courses [list of Course] -- the Courses in this schedule
 34 """
 35
 36 def __init__(self, student, semester):
 37 """A schedule for <student> in <semester>, which starts with no courses.
 38 """
 39 self.student = student
 40 self.semester = semester
 41 self.courses = []
 42
 43 def total_credits(self):
 44 """Return: the total number of credits in this schedule.
 45 """
 46 total = 0
 47 for course in self.courses:
 48 total += course.credits
 49 return total
 50

1 of 4

 51 def overlaps(self, other_schedule):
 52 """Return: True if this schedule contains any course with the same title
 53 as a course contained in <other_schedule>.
 54 Pre: other_schedule is a Schedule.
 55 """
 56 for course in self.courses:
 57 if other_schedule.contains_course(course):
 58 return True
 59 return False
 60
 61 def contains_course(self, query_course):
 62 """Return: True if this schedule contains a course with the same title
 63 as <query_course>.
 64 """
 65 for course in self.courses:
 66 if course.title == query_course.title:
 67 return True
 68 return False
 69
 70
 71 class Student(object):
 72 """Instances represent students at Cornell. For each student, we keep track
 73 of their schedules for each semester they've been at Cornell.
 74
 75 Instance variables:
 76 name [str] --- Name of student
 77 schedules [list of Schedule] -- the student's schedules from all semesters,
 78 in reverse chronological order. The Schedule for the current semester
 79 is at position 0 in this list.
 80 """
 81
 82 def __init__(self, name):
 83 """A new student named <name>, who starts with no schedules.
 84 Pre: <name> is a string.
 85 """
 86 self.name = name
 87 self.schedules = []
 88
 89 def start_semester(self, semester):
 90 """Set up for a new semester by adding an empty Schedule at the head
 91 of the schedules list.
 92 Pre: <semester> is a string, such as '2014sp'
 93 """
 94 self.schedules.insert(0, Schedule(self, semester))
 95
 96 def add_course(self, course):
 97 """Add a course for the current semester. This means the course is added
 98 to the student's current schedule, and the student is added to the
 99 enrollment of the course.
 100 Pre: <course> is a Course, the student has a current schedule, and <course>
 101 is not already on the current semester's schedule.

2 of 4

 102 """
 103 # TODO: implement this method
 104 # Write your answer on the main exam sheet, not on this printout.
 105
 106 def validate(self, credit_limit):
 107 """Return: True if the student's schedule for the current semester is
 108 valid, which means that
 109 (a) the total number of credits in the current semester is not over
 110 <credit_limit> (credits from prior semesters don't matter)
 111 (b) the student is not taking any courses in the current semester that
 112 they already took in a previous semester. Course titles are used
 113 to determine when a course is repeated; see Schedule.overlaps.
 114 Pre: credit_limit is an integer, and the student has a current schedule.
 115 """
 116 # TODO: implement this method
 117 # Write your answer on the main exam sheet, not on this printout.
 118 # Be sure to take the time to read through all the methods in Schedule --
 119 # using them makes this method much shorter to implement.
 120
 121
 122 def test_enrollment():
 123 """Test the enrollment system, making sure particularly that validation of
 124 schedules works properly and that students get enrolled in the courses
 125 that go on their schedules."""
 126
 127 # Four courses, offered in each of two semesters
 128 c1_s14 = Course('CS1110: Awesome Python', 4)
 129 c2_s14 = Course('CS2110: Jolly Java', 4)
 130 c3_s14 = Course('CS4740: Natural Language Processing', 4)
 131 c4_s14 = Course('CS4620: Computer Graphics', 3)
 132 c1_f14 = Course('CS1110: Awesome Python', 4)
 133 c2_f14 = Course('CS2110: Jolly Java', 4)
 134 c3_f14 = Course('CS4740: Natural Language Processing', 4)
 135 c4_f14 = Course('CS4620: Computer Graphics', 3)
 136
 137 # A student whose course enrollment validates OK
 138 ljl = Student('Lillian Lee')
 139 ljl.start_semester('Spring 2014')
 140 ljl.add_course(c1_s14)
 141 ljl.start_semester('Fall 2014')
 142 ljl.add_course(c2_f14)
 143 assert ljl.schedules[1].contains_course(c1_s14)
 144 assert not ljl.schedules[1].contains_course(c2_f14)
 145 assert not ljl.schedules[0].overlaps(ljl.schedules[1])
 146 assert ljl.schedules[0].total_credits() == 4
 147 assert ljl.validate(5)
 148
 149 # A student who is trying to re-take a course
 150 srm = Student('Steve Marschner')
 151 srm.start_semester('Spring 2014')
 152 srm.add_course(c1_s14)

3 of 4

 153 srm.start_semester('Fall 2014')
 154 srm.add_course(c1_f14)
 155 assert srm.schedules[1].contains_course(srm.schedules[0].courses[0])
 156 assert srm.schedules[1].overlaps(srm.schedules[0])
 157 assert not srm.validate(5)
 158
 159 # A student who is trying to take too many credits
 160 mcp = Student('Mary Pisaniello')
 161 mcp.start_semester('Fall 2014')
 162 mcp.add_course(c1_f14)
 163 mcp.add_course(c2_f14)
 164 mcp.add_course(c3_f14)
 165 mcp.add_course(c4_f14)
 166 assert mcp.schedules[0].total_credits() == 15
 167 assert not mcp.validate(14)
 168
 169 # Check that enrollments came out OK
 170 assert set(c1_s14.students) == set([ljl, srm])
 171 assert set(c2_f14.students) == set([ljl, mcp])
 172
 173
 174 if __name__ == '__main__':
 175 test_enrollment()
 176

4 of 4

